Mathematical Notes

, Volume 101, Issue 3–4, pp 566–572 | Cite as

On the behavior of harmonic mappings in angles

  • S. I. Bezrodnykh
  • V. I. Vlasov
Short Communications


harmonic and quasiconformal mapping behavior of mappings near the vertices of re-entrant angles harmonic computational grid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Radó, “Aufgabe 41,” Jahresbericht D.M. V. 35, 49 (1926).Google Scholar
  2. 2.
    H. Kneser, “Lösung der Aufgabe 41,” Jahresbericht D.M. V. 35, 123–124 (1926).Google Scholar
  3. 3.
    G. Choquet, Bull. Sci. Math. (2) 69 (2), 156 (1945).MathSciNetGoogle Scholar
  4. 4.
    L. D. Kudryavtsev, Mat. Sb. 36 (78) (2), 201 (1955).MathSciNetGoogle Scholar
  5. 5.
    O. Martio, Ann. Acad. Sci. Fenn. Ser. A. I 425, 3 (1968).Google Scholar
  6. 6.
    R. Hamilton, Harmonic Maps of Manifolds with Boundary, in Lecture Notes inMath. (Springer–Verlag, Berlin, 1975), Vol.471.Google Scholar
  7. 7.
    J. Clunie and T. Sheil–Small, Ann. Acad. Sci. Fenn. Ser. A I Math., No. 9, 3 (1984).MathSciNetCrossRefGoogle Scholar
  8. 8.
    J. Jost, in Harmonic Mappings and Minimal Immersions, Lecture Notes in Math. (Springer–Verlag, Berlin, 1985), Vol. 1161, pp. 118–192.MathSciNetCrossRefGoogle Scholar
  9. 9.
    P. Duren, Harmonic Mappings in the Plane, in Cambrige Tracts in Math. (Cambrige Univ. Press, Cambrige, 2004), Vol.156.Google Scholar
  10. 10.
    D. Bshouty and W. Hengartner, “Univalent harmonic mappings in the plane,” in Handbook of Complex Analysis: Geometric Function Theory (Elsevier, Amsterdam, 2005), Vol. 2, pp. 479–506.MathSciNetzbMATHGoogle Scholar
  11. 11.
    S. I. Bezrodnykh and V. I. Vlasov, in SMFN (RUDN, Moscow, 2012), Vol. 46, pp. 5–30 [in Russian].Google Scholar
  12. 12.
    A. M. Winslow, J. Computational Phys. 1 (2), 149 (1967).MathSciNetCrossRefGoogle Scholar
  13. 13.
    S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, G. P. Prokopov, and A. M. Kraiko, Numerical Solution of Multidimensional Problems of Gas Dynamics (Nauka, Moscow, 1976) [in Russian].Google Scholar
  14. 14.
    J. F. Thompson, Z. U. A. Warsi, and C. W. Mastin, Numerical Grid Generation. Foundations and Applications (North-Holland Publ., New York, 1985).zbMATHGoogle Scholar
  15. 15.
    S. Sengupta, J. Hauser, P. R. Eiseman, and J. F. Thompson, Numerical Grid Generation in Computational Fluid Mechanics’ 88 (Pineridge Press, Swansea, 1988).Google Scholar
  16. 16.
    P. Knupp and S. Steinberg, Fundamentals of Grid Generation (CRC Press, Boca Raton, FL, 1994).zbMATHGoogle Scholar
  17. 17.
    S. A. Ivanenko, Adaptive Harmonic Grids (Izd. Vych. Tsentr RAN, Moscow, 1997) [in Russian].zbMATHGoogle Scholar
  18. 18.
    V. D. Liseikin, Grid Generation Methods. Scientific Computation (Springer-Verlag, Berlin, 1999) [in Russian].CrossRefzbMATHGoogle Scholar
  19. 19.
    A. A. Samarskii, Theory of Difference Schemes (Nauka, Moscow, 1977) [in Russian].zbMATHGoogle Scholar
  20. 20.
    G. I. Marchuk, Methods of Computational Mathematics (Nauka, Moscow, 1980) [in Russian].zbMATHGoogle Scholar
  21. 21.
    P. J. Roache and S. Steinberg, “A new approach grid generation using a variational formulation,” in Proceedings of the 7th Computational Physics Conference (1985), pp. 360–370.Google Scholar
  22. 22.
    P. Knupp and R. Luczak, Numer.Methods Partial Differential Equations 11 (6), 561 (1995).MathSciNetCrossRefGoogle Scholar
  23. 23.
    B. N. Azarenok and A. A. Charakhch’yan, Mat. Modelirovanie 26 (12), 48 (2014).Google Scholar
  24. 24.
    P. P. Belinskii, S. K. Godunov, Yu. V. Ivanov, and I. K. Yanenko, Zh. Vychisl. Mat. i Mat. Fiz. 15 (6), 1499 (1975).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Federal Research Center “Computer Science and Control,”Russian Academy of SciencesMoscowRussia
  2. 2.RUDN UniversityMoscowRussia
  3. 3.Sternberg Astronomical InstituteLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations