Advertisement

Mathematical Notes

, Volume 100, Issue 1–2, pp 318–324 | Cite as

On the analytic continuation of the Lauricella function F D (N)

  • S. I. Bezrodnykh
Short Communications

Keywords

hypergeometric function of many variables Lauricella function analytic continuation Christoffel–Schwarz integral 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Lauricella, Rend. Circ. Math. Palermo 7, 111 (1893), Suppl. 1.CrossRefGoogle Scholar
  2. 2.
    H. Exton, Multiple Hypergeometric Functions and Application (J. Wiley & Sons, New York, 1976).zbMATHGoogle Scholar
  3. 3.
    K. Iwasaki, H. Kimura, Sh. Shimomura, and M. Yoshida, From Gauss to Painlevé: A Modern Theory of Special Functions, in Aspects ofMath. (Friedrich Vieweg & Sohn, Braunschweig, 1991), Vol. E16.CrossRefzbMATHGoogle Scholar
  4. 4.
    H. Bateman and A. Erdélyi, Higher Transcendental Functions, Vol. 1: The Hypergeometric Function, Legendre Functions (McGraw–Hill, New York–Toronto–London, 1953; Nauka, Moscow, 1973).zbMATHGoogle Scholar
  5. 5.
    E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Pt. 2: Transcendental Functions (Cambridge Univ. Press, Cambridge, 1996; Editorial URSS, Moscow, 2002).Google Scholar
  6. 6.
    P. Appel, J. Math. Pures Appl. (3) 8, 173 (1882).Google Scholar
  7. 7.
    P. Appel and J. Kampé de Feriet, Fonctions hypergé ometriques et hypersphé rique (Gauthier–Villars, Paris, 1926).Google Scholar
  8. 8.
    O. M. Olsson, J. Math. Phys. 5, 420 (1964).MathSciNetCrossRefGoogle Scholar
  9. 9.
    V. I. Vlasov, Boundary-Value Problems inDomainswith Curvilinear Boundary, Doctoral (Phys.–Math. ) Dissertation (Computer Center, AN SSSR, Moscow, 1990) [in Russian].Google Scholar
  10. 10.
    S. I. Bezrodnykh, in International Conference on Differential Equations and Dynamical Systems, Suzdal, June 27–July 2, 2008, Abstracts of papers (2008), pp. 34–36 [in Russian].Google Scholar
  11. 11.
    S. I. Bezrodnykh, in International Conference on Differential Equations and Their Applications, Belgorod, May 26–31, 2013, Abstracts of papers (2013), pp. 18–20 [in Russian].Google Scholar
  12. 12.
    S. I. Bezrodnykh, Dokl. Ross. Akad. Nauk 467 (1), 7–12 (2016) [Dokl. Math 93 (2), 129–134 (2016)].Google Scholar
  13. 13.
    A. Erdélyi, Acta Math. 83 (1), 131 (1950).MathSciNetCrossRefGoogle Scholar
  14. 14.
    S. I. Bezrodnykh and V. I. Vlasov, Spectral and Evolution Problems 16, 112 (2006).Google Scholar
  15. 15.
    P. Henrici, Applied and Computational Complex Analysis, (John Wiley, New York, 1974, 1977, 1986), Vols. 1–3.zbMATHGoogle Scholar
  16. 16.
    T. A. Driscoll and L. N. Trefethen, Schwarz–Christoffel Mapping, in CambridgeMonogr. Appl. Comput. Math. (Cambridge Univ. Press, Cambridge, 2002), Vol. 8.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Federal Research Center “Computer Science and Control,”Russian Academy of SciencesMoscowRussia
  2. 2.Sternberg Astronomical InstituteLomonosov Moscow State UniversityMoscowRussia
  3. 3.Peoples’ Friendship University of RussiaMoscowRussia

Personalised recommendations