Mathematical Notes

, Volume 100, Issue 1–2, pp 123–131 | Cite as

Quantum calculus and quasiconformal mappings

  • A. G. Sergeev


The quantum interpretation of quasisymmetric homeomorphisms of the circle, i.e., homeomorphisms that can be extended to quasiconformal homeomorphisms of the unit disk, and their relationship to basic constructions of quantum calculus are discussed.


quasisymmetric homeomorphism Sobolev space of half-differentiable functions Connes quantization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Connes, Noncommutative Geometry (Academic Press, San Diego, CA, 1994).zbMATHGoogle Scholar
  2. 2.
    A. G. Sergeev, “Lectures on universal Teichmüller space,” in Lektsion. Kursy NOTs (Mat. Inst. im. V. A. Steklova, Ross. Akad. Nauk, Moscow, 2013), Vol. 21, pp. 3–130 [in Russian].Google Scholar
  3. 3.
    A. G. Sergeev, “Quantization Sobolev space semidifferentiable functions,” Mat. Sb. (2016) (in press).Google Scholar
  4. 4.
    L. V. Ahlfors, Conformal Invariants, Topics in Geometric Function Theory (McGraw-Hill, New York, 1973).zbMATHGoogle Scholar
  5. 5.
    S. C. Power, Hankel Operators onHilbert Space, in Research Notes inMath. (Pitman Adv. Publ. Program, Boston, MA, 1982), Vol. 64.Google Scholar
  6. 6.
    L. Ahlfors, Lectures on Quasiconformal Mappings (Van Nostrand, Toronto, 1966; Mir, Moscow, 1969).zbMATHGoogle Scholar
  7. 7.
    O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, in Grundlehren Math. Wiss. (Springer-Verlag, Berlin, 1973), Vol. 126.Google Scholar
  8. 8.
    S. Nag and D. Sullivan, “Teichmüller theory and the universal period mapping via quantum calculus and the H1/2 space on the circle,” Osaka J. Math. 32 (1), 1–34 (1995).MathSciNetzbMATHGoogle Scholar
  9. 9.
    A. G. Sergeev, “Geometric quantization spaces loops,” Sovr. Probl. Mat. 13, 3–294 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations