Advertisement

Mathematical Notes

, Volume 99, Issue 5–6, pp 932–937 | Cite as

On a new representation for the solution of the Riemann–Hilbert problem

  • S. I. Bezrodnykh
  • V. I. Vlasov
Short Communications

Keywords

analytic function Riemann–Hilbert problem Lauricella function Christoffel–Schwarz integral conformal mapping Cauchy-type integral 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. I. Muskhelishvili, Singular Integral Equations (Nauka, Moscow, 1968) [in Russian].zbMATHGoogle Scholar
  2. 2.
    F. D. Gakhov, Boundary-Value Problems (Nauka, Moscow, 1977) [in Russian].zbMATHGoogle Scholar
  3. 3.
    S. Prösdorf, Einige Klassen singulärer Gleichungen (Akademie–Verlag, Berlin, 1974).CrossRefGoogle Scholar
  4. 4.
    S. I. Bezrodnykh and V. I. Vlasov, in International Conference “Differential Equations and Related Questions Dedicated to theMemory of I. G. Petrovskii”, Moscow, May 21–26, 2007, Abstracts of papers, pp. 36 [in Russian].Google Scholar
  5. 5.
    S. I. Bezrodnykh, in III International Conference “Mathematical Ideas of P. L. Chebyshev and Their Application to Modern Problems of Natural Science”, Obninsk, May 14–18, 2006, Abstracts of papers (2006), pp. 18–19 [in Russian].Google Scholar
  6. 6.
    S. I. Bezrodnykh, Dokl. Ross. Akad. Nauk 467 (1), 7 (2016) [Dokl.Math. 93 (2), 129 (2016)].Google Scholar
  7. 7.
    S. I. Bezrodnykh, Mat. Zametki 99 (6), 832 (2016) [Math. Notes 99 (5–6), 821 (2016)].MathSciNetCrossRefGoogle Scholar
  8. 8.
    G. Lauricella, Rend. Circ.Math. Palermo 7, 111 (1893).CrossRefGoogle Scholar
  9. 9.
    H. Exton, Multiple Hypergeometric Functions and Application (Chichester, NY, 1976).zbMATHGoogle Scholar
  10. 10.
    S. I. Bezrodnykh and V. I. Vlasov, Zh. Vychisl.Mat. i Mat. Fiz. 42 (2), 277 (2002).MathSciNetGoogle Scholar
  11. 11.
    S. I. Bezrodnykh, V. I. Vlasov, and B. V. Somov, in Astronomic and Space Science Proceedings (Springer-Verlag, Berlin–Heidelberg, 2012), Vol. 30, pp. 133.Google Scholar
  12. 12.
    S. I. Bezrodnykh and V. I. Vlasov, Zh. Vychisl.Mat. iMat. Fiz. 54 (12), 1904 (2014) [Comput. Math. Math. Phys. 54 (12), 1826 (2014)].MathSciNetGoogle Scholar
  13. 13.
    S. I. Bezrodnykh and B. V. Somov, Advances in Space Research 56, 964–969 (2015).CrossRefGoogle Scholar
  14. 14.
    M. A. Evgrafov, Asymptotic Estimates and Entire Functions (Nauka, Moscow, 1979) [in Russian].zbMATHGoogle Scholar
  15. 15.
    A. P. Soldatov, Izv. Akad. Nauk SSSR Ser. Mat. 56 (3), 566 (1992).Google Scholar
  16. 16.
    A. P. Soldatov, Differ. Uravn. 38 (6), 809 (2002)MathSciNetGoogle Scholar
  17. 17.
    B. Riemann, Grundlagen fÜr eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse–Inauguraldissertation: Göttingen, 1851 (Werke, Leipzig, 1876), pp. 3–43.Google Scholar
  18. 18.
    E. Trefftz, Math. Ann. 82 (1/2), 97 (1921).Google Scholar
  19. 19.
    W. Koppenfels and F. Stallmann, Praxis der konformen Abbildung (Springer Verlag, Berlin, 1959).CrossRefzbMATHGoogle Scholar
  20. 20.
    L. N. Trefethen and R. J. Williams, J. Comput. Appl.Math. 14, 227–249 (1986).MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Federal Research Center “Computer Science and Control,”Russian Academy of SciencesMoscowRussia
  2. 2.Sternberg State Astronomical InstituteLomonosov Moscow State UniversityMoscowRussia
  3. 3.Peoples’ Friendship University of RussiaMoscowRussia

Personalised recommendations