Mathematical Notes

, Volume 99, Issue 5–6, pp 636–642 | Cite as

Existence of the stationary solution of a Rayleigh-type equation

  • D. I. Borisov
  • R. K. Gaydukov


A fluid flow along a semi-infinite plate with small periodic irregularities on the surface is considered for large Reynolds numbers. The boundary layer has a double-deck structure: a thin boundary layer (“lower deck”) and a classical Prandtl boundary layer (“upper deck”). The aim of this paper is to prove the existence and uniqueness of the stationary solution of a Rayleigh-type equation, which describes oscillations of the vertical velocity component in the classical boundary layer.


double-deck structure boundary-layer theory fluid mechanics Navier–Stokes equations Rayleigh-type equation eigenvalue problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. G. Danilov and R. K. Gaydukov, “Vortexes in the Prandtl boundary layer induced by irregularities on a plate,” Russian J. Math. Phys. 22 (2) (2015).Google Scholar
  2. 2.
    V. G. Danilov and M. V. Makarova, “Asymptotic and numerical analysis of the flow around a plate with small periodic irregularities,” Russian J. Math. Phys. 2 (1) (1994).Google Scholar
  3. 3.
    L. Rayleigh, “On the stability or instability of certain fluid motions,” Proc. LondonMath. Soc. 11 (1880).Google Scholar
  4. 4.
    V. I. Arnold, Mathematical Methods of Classical Mechanics (Springer-Verlag, Berlin–New York, 1989).CrossRefGoogle Scholar
  5. 5.
    H. Schlichting and K. Gersten, Boundary Layer Theory (Springer-Verlag, Berlin–New York, 2000).CrossRefzbMATHGoogle Scholar
  6. 6.
    J. P. Boyd, “The Blasius function: ?omputations before computers, the value of tricks, undergraduate projects, and open research problems,” SIAM Review 50 (4) (2008).CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Institute of Mathematics with Computer Center, Ufa Scientific CenterRussian Academy of SciencesUfaRussia
  2. 2.Akhmulla Bashkir State Pedagogical UniversityUfaRussia
  3. 3.University of Hrádec KrálovéHrádec KrálovéCzech Republic
  4. 4.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations