Advertisement

Mathematical Notes

, Volume 99, Issue 3–4, pp 382–389 | Cite as

Besicovitch cylindrical transformation with a Hölder function

  • A. V. KocherginEmail author
Article

Abstract

For any γ ∈ (0, 1) and ε > 0, we construct a cylindrical cascade with a γ-Hölder function over some rotation of the circle. This transformation has the Besicovitch property; i.e., it is topologically transitive and has discrete orbits. The Hausdorff dimension of the set of points of the circle that have discrete orbits is greater than 1 − γε.

Keywords

cylindrical transformation Besicovitch property Hölder property Hausdorff dimension 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. V. Anosov, “Geodesic flows on closed Riemannian manifolds of negative curvature,” Trudy Mat. Inst. Steklov 90, 3–210 (1967) [Proc. Steklov Inst. Math. 90, 1–235 (1967)].MathSciNetGoogle Scholar
  2. 2.
    H. Poincaré, “Mémoire sur les courbes définies par une équation différentielle,” Journ. de Math. 3 7, 375–422 (1881), 8, 251–296 (1882); Journ. deMath. (4) 1, 167–244 (1885), 2, 151–217 (1886).zbMATHGoogle Scholar
  3. 3.
    L. G. Shnirel’man, “Example of a transformation of the plane,” Izv. Donsk. Politekhn. Inst. 4, 64–74 (1930).Google Scholar
  4. 4.
    A. S. Besicovitch, “A problem on topological transformation of the plane,” Fund. Math. 28, 61–65 (1937).zbMATHGoogle Scholar
  5. 5.
    W. H. Gottschalk and G. A. Hedlund, Topological Dynamics, in Amer. Math. Soc. Colloq. Publ. (Amer. Math. Soc., Providence, RI, 1955), Vol. 36.Google Scholar
  6. 6.
    A. S. Besicovitch, “A problem on topological transformations of the plane. II,” Proc. Cambridge Philos. Soc. 47, 38–45 (1951).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    E. A. Sidorov, “A certain class of minimal sets,” UspekhiMat. Nauk 28 4, 225–226 (1973).MathSciNetGoogle Scholar
  8. 8.
    S. Matsumoto and M. Shishikura, “Minimal sets of certain annular homeomorphisms,” Hiroshima Math. J. 32 2, 207–215 (2002).MathSciNetzbMATHGoogle Scholar
  9. 9.
    M. K. Mentzen and A. Siemaszko, “Cylinder cocycle extensions of minimal rotations on monothetic groups,” Colloq. Math. 101 1, 75–88 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    A. V. Kochergin, “On the absence of mixing in special flows over the rotation of a circle and in flows on a two-dimensional torus,” Dokl. Akad. Nauk SSSR 205 3, 515–518 (1972) [Soviet Math. Dokl. 13, 949–952 (1972)].MathSciNetGoogle Scholar
  11. 11.
    M. D. Shklover, “On classical dynamical systems with continuous spectrum on the torus,” Izv. Vyssh. Uchebn. Zaved. Mat. [SovietMath. (Iz. VUZ)] No. 10, 113–124 (1967).zbMATHGoogle Scholar
  12. 12.
    A. M. Stepin, “On a homological equation of the theory of dynamical systems,” in Studies of the Theory of Functions of Several Real Variables (Izd. Yaroslavsk. Univ., Yaroslavl, 1982), pp. 106–117 [in Russian].Google Scholar
  13. 13.
    A. V. Kochergin, “A mixing special flow over a circle rotation with almost Lipschitz function,” Mat. Sb. 193 3, 51–78 (2002) [Sb. Math. 193 3, 359–385 (2002)].MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    K. Fraczek and M. Lemanczyk, “On Hausdorf dimension of the set of closed orbits for a cylindrical transformation,” Nonlinearity 23, 2393–2422 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    E. Dymek, Transitive Cylinder Flows Whose Set of Discrete Points is of Full Hausdorff Dimension, arXiv: 1303. 3099v1 (2013).Google Scholar
  16. 16.
    A. Ya. Khinchin, Continued Fractions (Gos. Izd. Fiz. Mat. Lit., Moscow, 1960) [in Russian].zbMATHGoogle Scholar
  17. 17.
    K. Falconer, Fractal Geometry. Mathematical Foundations and Applications (John Wiley and Sons, Hoboken, NJ, 2003).CrossRefzbMATHGoogle Scholar
  18. 18.
    A. Kochergin, “A Besicovitch cylindrical transformation with Hölder function,” Electron. Res. Announc. Amer. Math. Soc. 22, 87–91 (2015).MathSciNetzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations