Advertisement

Mathematical Notes

, Volume 99, Issue 3–4, pp 378–381 | Cite as

Inversion of the Cauchy–Bunyakovskii–Schwarz inequality

  • I. D. Kan
Article

Abstract

In the present paper, the inequality inverse to the Cauchy–Bunyakovskii–Schwarz inequality and generalizing other well-known inversions of this inequality is proved.

Keywords

Cauchy–Bunyakovskii–Schwarz inequality generalized parallelepiped inversion of the Cauchy–Bunyakovskii–Schwarz inequality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. D. Kan and D. A. Frolenkov, “A strengthening of a theorem of Bourgain and Kontorovich,” Izv. Ross. Akad. Nauk Ser. Mat. 78 2, 87–144 (2014) [Izv. Math. 78 2, 293–353 (2014)].MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    D. A. Frolenkov and I. D. Kan, “A strengthening of a theorem of Bourgain–Kontorovich. II,” Mosc. J. Comb. Number Theory 4 1, 78–117 (2014).MathSciNetzbMATHGoogle Scholar
  3. 3.
    I. D. Kan, “A strengthening of a theorem of Bourgain and Kontorovich. III,” Izv. Ross. Akad. Nauk Ser. Mat. 79 2, 77–100 (2015) [Izv. Math. 79 2, 288–310 (2015)].MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    S. Huang, An Improvement on Zaremba’s Conjecture, arXiv: 1303. 3772v1 (2013).Google Scholar
  5. 5.
    S. V. Konyagin, “Estimates of trigonometric sums over subgroups and of Gauss sums,” in IV International Conference “Topical Problems and Applications of Number Theory” Dedicated to the 180th Anniversary of P. L. Chebyshev and to the 110th Anniversary of I. M. Vinogradov, Tula, 2001, (Izd. Moskov. Univ., Moscow, 2002), Part III, pp. 86–114 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.National Research University Moscow Institute of AviationMoscowRussia

Personalised recommendations