Mathematical Notes

, Volume 99, Issue 1–2, pp 330–334 | Cite as

An inequality for Betti numbers of hyper-Kähler manifolds of dimension 6

Short Communications

Keywords

Betti numbers hyper-Kähler manifold hyper-Kähler manifold of dimension 6 simple hyper-Kähler manifold Rozansky–Witten invariants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. A. Bogomolov, Mat. Sb. 93 (4), 573 (1974). [Math. USSR-Sb. 22 (4), 580 (1974)].MathSciNetGoogle Scholar
  2. 2.
    A. Beauville, J. Differential Geom. 18 (4), 755 (1983).MathSciNetGoogle Scholar
  3. 3.
    K. G. O’Grady, J. Reine Angew.Math. 512, 49 (1999).MathSciNetGoogle Scholar
  4. 4.
    K. G. O’Grady, J. Algebraic Geom. 12, 435 (2003).MathSciNetCrossRefGoogle Scholar
  5. 5.
    D. Kaledin, M. Lehn, and Ch. Sorger, Invent. Math. 164 (3), 591 (2006).MathSciNetCrossRefGoogle Scholar
  6. 6.
    D. Huybrechts, Finiteness Results for Hyperkaehler Manifolds, arXiv: math/ 0109024v1 (2001).Google Scholar
  7. 7.
    D. Guan, Math. Res. Lett. 8 (5), 663 (2001).MathSciNetCrossRefGoogle Scholar
  8. 8.
    A. Besse, Einstein Manifolds, in Ergeb. Math. Grenzgeb. (3) (Springer-Verlag, Berlin–New York, 1987), Vol. 10.Google Scholar
  9. 9.
    A. Fujiki, in Algebraic Geometry, Sendai, 1985, in Adv. Stud. Pure Math. (North-Holland, Amsterdam, 1987), Vol. 10, pp. 105–165.MathSciNetGoogle Scholar
  10. 10.
    N. Hitchin and J. Sawon, DukeMath. J. 106 (3), 599 (2001).MathSciNetGoogle Scholar
  11. 11.
    J. Sawon, Rozansky–Witten Invariants of Hyperkähler Manifolds, PhD Thesis (University of Cambridge, 1999).MATHGoogle Scholar
  12. 12.
    D. Huybrechts, in Calabi–Yau Manifolds and Related Geometries, in Universitext (Springer-Verlag, Berlin, (2003), pp. 161–225.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations