Mathematical Notes

, Volume 98, Issue 1–2, pp 273–282 | Cite as

On effective σ-boundedness and σ-compactness in Solovay’s model

  • V. G. Kanovei
  • V. A. Lyubetsky


Two dichotomy theorems on the effective σ-boundedness and effective σ-compactness of ordinal definable point sets in Solovay’s model are proved.


Solovay’smodel effective σ-boundedness effective σ-compactness descriptive set theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. G. Kanovei and V. A. Lyubetsky, “Effective compactness and sigma-compactness,” Mat. Zametki 91 (6), 840–852 (2012) [Math. Notes 91 (6), 789–799 (2012)].MathSciNetCrossRefGoogle Scholar
  2. 2.
    V. G. Kanovei and V. A. Lyubetsky, Modern Set Theory: Borel and Projective Sets (MTsNMO, Moscow, 2010) [in Russian].Google Scholar
  3. 3.
    A. S. Kechris, “On a notion of smallness for subsets of the Baire space,” Trans. Amer. Math. Soc. 229, 191–207 (1977).zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    A. Louveau and J. Saint-Raymond, “Borel classes and closed games: Wadge-type and Hurewicz-type results,” Trans. Amer.Math. Soc. 304, 431–467 (1987).zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    J. Saint-Raymond, “Approximation des sous-ensembles analytiques par l’interior,” C. R. Acad. Sci. Paris Sér. A 281, 85–87 (1975).zbMATHMathSciNetGoogle Scholar
  6. 6.
    W. Hurewicz, “Relativ perfekte Teile von Punktmengen und Mengen (A),” Fundam. Math. 12, 78–109 (1928).zbMATHGoogle Scholar
  7. 7.
    V. Kanovei, Borel Equivalence Relations. Structure and Classification, in Univ. Lecture Ser. (Amer. Math. Soc., Providence, RI, 2008), Vol. 44.Google Scholar
  8. 8.
    Su Gao, Invariant Descriptive Set Theory, in Pure Appl. Math. (Boca Raton) (CRC Press, Boca Raton, FL, 2009), Vol. 293.Google Scholar
  9. 9.
    V. Kanovei, M. Sabok, and J. Zapletal, Canonical Ramsey Theory on Polish Spaces, in Cambridge Tracts in Math. (Cambridge Univ. Press, Cambridge, 2013), Vol. 202.Google Scholar
  10. 10.
    V. Kanovei and V. Lyubetsky, “On effective s-boundedness and σ-compactness,” MLQ Math. Log. Q. 59 (3), 147–166 (2013).zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    R. M. Solovay, “A model of set theory in which every set of reals is Lebesgue measurable,” Ann. of Math. (2) 92, 1–56 (1970).zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    V. G. Kanovei and V. A. Lyubetsky, Modern Set Theory: Absolutely Unsolvable Classical Problems (MTsNMO, Moscow, 2013) [in Russian].Google Scholar
  13. 13.
    L. Harrington, “Long projective wellorderings,” Ann.Math. Logic 12 (1), 1–24 (1977).zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    V. G. Kanovei, “Descriptive forms of the countable axiom of choice,” in Studies in Nonclassical Logics and Set Theory (Nauka, Moscow, 1979), pp. 3–136 [in Russian].Google Scholar
  15. 15.
    V. G. Kanovei and V. A. Lyubetsky, “On some classical problems of descriptive set theory,” Uspekhi Mat. Nauk 58 (5), 3–88 (2003) [Russian Math. Surveys 58 (5), 839–927 (2003)].MathSciNetCrossRefGoogle Scholar
  16. 16.
    A. S. Kechris, Classical Descriptive Set Theory, in Grad. Texts in Math. (Springer-Verlag, New York, 1995), Vol. 156.Google Scholar
  17. 17.
    V. G. Kanovei, “The projective hierarchy of N. N. Luzin: The current state-of-the-art in the theory,” in Handbook of Mathematical Logic, Part II: Set Theory, Supplement to the Russian translation (Nauka, Moscow, 1982), pp. 273–364 [in Russian].Google Scholar
  18. 18.
    T. J. Jech, Lectures in Set Theory with Particular Emphasis on the Method of Forcing (Springer-Verlag, Berlin–Heidelberg–New York, 1971; MMir, Moscow, 1973).zbMATHGoogle Scholar
  19. 19.
    V. Kanovei, “An Ulm-type classification theorem for equivalence relations in Solovay model,” J. Symbolic Logic 62 (4), 1333–1351 (1997).zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Kharkevich Institute for Problems of Data TransmissionMoscowRussia
  2. 2.Moscow State University of Railway Engineering (MIIT)MoscowRussia

Personalised recommendations