Advertisement

Mathematical Notes

, Volume 98, Issue 1–2, pp 180–184 | Cite as

The saturation regime of Meixner polynomials and the discrete Bessel kernel

  • A. I. Aptekarev
  • D. N. Tulyakov
Short Communications
  • 35 Downloads

Keywords

Meixner polynomial discrete Bessel kernel saturation regime basis function Christoffel—Darboux kernel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Meixner, J. London Math. Soc. 9, 6 (1934).MathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Borodin and G. Olshanskii, Moscow Math. J. {d6} (4), 629 (2006).MathSciNetGoogle Scholar
  3. 3.
    A. Borodin, A. Okounkov, and G. Olshanskii, J. Amer.Math. Soc. 13 (3), 481 (2000).zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    A. Borodin, Internat.Math. Res. Notices 9, 467 (2000).CrossRefGoogle Scholar
  5. 5.
    K. Johansson, Ann. ofMath. (2) 153 (1), 259 (2001).zbMATHCrossRefGoogle Scholar
  6. 6.
    T. S. Chihara, An Introduction to Orthogonal Polynomials, in Math. Appl. (Gordon and Breach Sci. Publ., New York, 1978), Vol. 13 [in Russian].Google Scholar
  7. 7.
    D. N. Tulyakov, Mat. Sb. 201 (9), 111 (2010) [Sb. Math. 201 (9), 1355 (2010)].MathSciNetCrossRefGoogle Scholar
  8. 8.
    A. I. Aptekarev and D. N. Tulyakov, Mat. Sb. 205 (12), 17 (2014) [Sb.Math. 205 (12), 1696 (2014)].MathSciNetCrossRefGoogle Scholar
  9. 9.
    A. I. Aptekarev and D. N. Tulyakov, in Trudy Moskov. Mat. Obshch. (MTsNMO, Moscow, 2012), Vol. 73, No. 1, pp. 87–132 [Trans.MoscowMath. Soc. 2012, 67 (2012)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Keldysh Institute of Applied MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations