Mathematical Notes

, Volume 97, Issue 3–4, pp 309–320 | Cite as

On the method of two-sided continuation of solutions of the integral convolution equation on a finite Interval

  • A. G. Barseghyan


The paper is devoted to the development of the method of two-sided continuation of the solution of the integral convolution equation
$$\begin{array}{*{20}c} {S(x) = g(x) + \int_0^r {K(x - t)S(t)dt,} } & {0 < x < r,} & {r < \infty ,} \\ \end{array}$$
with an even kernel function KL 1(−r, r). Two continuations of the solution S are considered: to (−∞, 0] and to [r,∞). A Wiener–Hopf-type factorization is used. Under invertibility conditions for some operators, the problem can be reduced to two equations with sum kernels:
$$\begin{array}{*{20}c} {H^ \pm (x) = q_0^ \pm (x) \mp \int_0^\infty {U(x + t + r)H^ \pm (t)dt,} } & {x > 0,} & {U \in L^ + .} \\ \end{array}$$
Applied aspects of the realization of the method are discussed.


integral convolution equation two-sided continuation of a solution kernel function Wiener–Hopf-type factorization Baxter–Hirschman method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Ts. Gokhberg and I. A. Fel’dman, Convolution Equations and Projection Methods for Their Solution (Nauka, Moscow, 1971) [in Russian].Google Scholar
  2. 2.
    G. Baxter, I. I. Hirschman, Jr., “An explicit inversion formula for finite-section Wiener–Hopf operators,” Bull. Amer.Math. Soc. 70 (6), 820–823 (1964).MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    L. A. Sakhnovich, “Equations with a difference kernel on a finite interval,;; Uspekhi Mat. Nauk 35 (4), 69–129 (1980) [Russian Math. Surveys 35 (4), 81–152 (1980)].MATHMathSciNetGoogle Scholar
  4. 4.
    F. D. Gakhov and Yu. I. Cherskii, Equations of Convolution Type (Nauka, Moscow, 1978) [in Russian].MATHGoogle Scholar
  5. 5.
    I. Feldman, I. Gohberg, and N. Krupnik, “Convolution equations on finite intervals and factorization matrix functions,” Integral Equations Oper. Theory 36 (2), 201–211 (2000).MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    V. Yu. Novokshenov, “Convolution equations on a finite segment and factorization of elliptic matrices,” Mat. Zametki 27 (6), 935–946 (1980) [Math. Notes 27 (6), 449–455 (1980)].MathSciNetGoogle Scholar
  7. 7.
    V. V. Sobolev, Transfer of Radiation Energy in the Atmospheres of Stars and Planets (GITTL,Moscow, 1956) [in Russian].Google Scholar
  8. 8.
    C. Cercignani, Theory and Application of the Boltzmann Equation (Plenum, New York, 1975; Mir, Moscow, 1978).Google Scholar
  9. 9.
    L. G. Arabadzhyan and N. B. Engibaryan, “Convolution equations and nonlinear functional equations,” in Itogi Nauki Tekh., Ser. Mat. Anal. (VINITI, Moscow, 1984), Vol. 22, pp. 175–244 [J. Sov. Math. 36, 745–791 (1987)].MathSciNetGoogle Scholar
  10. 10.
    J. Casti and R. Kalaba, Imbedding Methods in Applied Mathematics, in Appl. Math. Comp. (Addison-Wesley Publ., Reading,MA, 1973), Vol. 2.Google Scholar
  11. 11.
    N. B. Engibaryan and M. A. Mnatsakanyan, “An integral equation with a difference kernel,” Mat. Zametki 19 (6), 927–932 (1976) [Math. Notes 19 (5–6), 541–544 (1976)].MATHMathSciNetGoogle Scholar
  12. 12.
    M. P. Ganin, “On a Fredholm integral equation whose kernel depends on the difference of the arguments,” Izv. Vyssh. Uchebn. Zaved.Mat., No. 2, 31–43 (1963).MathSciNetGoogle Scholar
  13. 13.
    N. B. Engibaryan and A. G. Barseghyan, “Radiation transfer in a plane layer of finite thickness. Method of two-sided continuation,” Astrofizika 55 (4), 627–639 (2012).Google Scholar
  14. 14.
    A. G. Barsegyan (Barseghyan), “An integral equation with a sum-difference kernel on a finite interval,” Izv. Nats. Akad. Nauk ArmeniiMat. 40 (3), 24–34 (2005) [J. Contemp.Math. Anal. 40 (3), 22–32 (2006)].Google Scholar
  15. 15.
    N. B. Engibaryan and A. G. Barseghyan, “Random walks and mixtures of gamma-distributions,” Teor. Veroyatnost. Primenen. 55 (3), 571–577 (2010) [Theory Probab. Appl. 55 (3), 528–535 (2011)].CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Institute of MathematicsNational Academy of SciencesYerevanArmenia

Personalised recommendations