Advertisement

Mathematical Notes

, Volume 96, Issue 5–6, pp 965–970 | Cite as

Inserted perturbations generating asymptotical integrability

  • M. V. KarasevEmail author
  • E. M. Novikova
Article

Abstract

We discuss the general opportunity to create (asymptotically) a completely integrable system from the original perturbed system by inserting additional perturbing terms. After such an artificial insertion, there appears an opportunity to make the secondary averaging and secondary reduction of the original system. Thus, in this way, the 3D-system becomes 1-dimensional. We demonstrate this approach by the example of a resonance Penning trap.

Keywords

integrable systems perturbation reduction symmetry algebra frequency resonance Penning trap 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Gabrielse and F. C. Mackintosh, “Cylindrical Penning traps with orthogonalized anharmonicity compensation,” Intern. J. Mass Spectr. Ion Proc. 57, 1–17 (1984).CrossRefGoogle Scholar
  2. 2.
    G. Gabrielse, L. Haarsma, and S. L. Rolston, “Open endcap Penning traps for high precision experiments,” Intern. J. Mass Spectr. Ion Proc. 88, 319–332 (1989).CrossRefGoogle Scholar
  3. 3.
    D. Segal and M. Shapiro, “Nanoscale Paul trapping of a single electron,” Nanoletters 6(8), 1622–1626 (2006).CrossRefGoogle Scholar
  4. 4.
    K. Blaum and F. Herfurth (eds.), Trapped Charged Particles and Fundamental Interactions (Springer-Verlag, 2008).Google Scholar
  5. 5.
    P. K. Ghosh, Ion Traps (Clarendon Press, Oxford, 1995).Google Scholar
  6. 6.
    F. G. Major, V. Gheorghe, and G. Werth, Charged Particle Traps (Springer, 2002).Google Scholar
  7. 7.
    T. M. Squires, P. Yesley, and G. Gabrielse, “Stability of a charged particle in a combined Penning-Ioffe trap,” Physical Review Letters 86(23), 5266–5269 (2001).CrossRefGoogle Scholar
  8. 8.
    B. Hezel, I. Lesanovsky, and P. Schmelcher, “Ultracold Rydberg atoms in a Ioffe-Pritchard trap,” arXiv: 0705.1299v2.Google Scholar
  9. 9.
    M. Kretzschmar, “Single particle motion in a Penning trap: Description in the classical canonical formalism,” Physica Scripta 46, 544–554 (1992).CrossRefGoogle Scholar
  10. 10.
    M. V. Karasev, “Birkhoff resonances and quantum ray method,” in Proc. Intern. Seminar “Days of Diffraction,” 2004 (St. Petersburg Univ. and Steklov Math. Institute, St. Petersburg, 2004), pp. 114–126.Google Scholar
  11. 11.
    M. V. Karasev, “Noncommutative algebras, nano-structures, and quantum dynamics generated by resonances. I,” in Quantum Algebras and Poisson Geometry in Mathematical Physics, Ed. by M. Karasev [Amer. Math. Soc. Transl. Ser. 2, Vol. 216 (Providence, 2005), pp. 1–18.Google Scholar
  12. 12.
    M. V. Karasev, “Noncommutative algebras, nano-structures, and quantum dynamics generated by resonances. II,” Adv. Stud. Contemp. Math. 11, 33–56 (2005).zbMATHMathSciNetGoogle Scholar
  13. 13.
    M. Karasev, “Noncommutative algebras, nano-structures, and quantum dynamics generated by resonances. III,” Russ. J. Math. Phys. 13(2), 131–150 (2006).CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    M. V. Karasev and E. M. Novikova, “Algebra and quantum geometry of multifrequency resonance,” Izv. Ross. Akad. Nauk Ser. Mat. 74(6), 55–106 (2010).CrossRefMathSciNetGoogle Scholar
  15. 15.
    M. Karasev and V. P. Maslov, “Asymptotic and geometric quantization,” Uspekhi Mat. Nauk 39(6), 115–173 (1984) [Russian Math. Surveys 39 (6), 133–205 (1984)].MathSciNetGoogle Scholar
  16. 16.
    M. Karasev and E. Novikova, “Algebras with polynomial commutation relations for a quantum particle in electric and magnetic fields,” in Quantum Algebras and Poisson Geometry in Mathematical Physics, Ed. by M. V. Karasev (Amer. Math. Soc., Providence, RI, 2005), Vol. 216, pp. 19–135.Google Scholar
  17. 17.
    M. Karasev and E. Novikova, “Representation of exact and semiclassical eigenfunctions via coherent states. Hydrogen atom in a magnetic field,” Teoret. Mat. Fiz. 108(3), 339–387 (1996) [Theoret. and Math. Phys. 108 (3), 1119–1159 (1996)].CrossRefMathSciNetGoogle Scholar
  18. 18.
    M. Karasev and E. Novikova, “Coherent transform of the spectral problem and algebras with nonlinear commutation relations,” J. Math. Sci. 95(6), 2703–2798 (1999).CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    M. Karasev and E. Novikova, “Non-Lie permutation relations, coherent states, and quantum embedding,” in Coherent Transform, Quantization, and Poisson Geometry, Ed. by M. V. Karasev (Amer. Math. Soc., Providence, RI, 1998), Vol. 187, pp. 1–202.Google Scholar
  20. 20.
    M. Karasev, “Quantum surfaces, special functions, and the Tunneling effect,” Lett. Math. Phys., 59, 229–269 (2001).CrossRefMathSciNetGoogle Scholar
  21. 21.
    O. Blagodyreva, M. Karasev, and E. Novikova, “Cubic algebra and averaged Hamiltonian for the resonance 3: (−1) Penning-Ioffe traps,” Russ. J. Math. Phys. 19(4), 441–450 (2012).CrossRefMathSciNetGoogle Scholar
  22. 22.
    M. Karasev and E. Novikova, “Secondary resonances in Penning Traps. Non-Lie symmetry algebras and quantum states,” Russ. J. Math. Phys. 20(1), 283–294 (2013).CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    M. Karasev and E. Novikova, “Eigenstates of Quantum Penning-Ioffe nanotraps at resonance,” Teoret. Mat. Fiz. 179(3), 406–425 (2014) [Theoret. and Math. Phys. 179 (3), 729–746 (2014)].CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Laboratory for Mathematical Methods in Natural SciencesNational Research University Higher School of EconomicsMoscowRussia

Personalised recommendations