Mathematical Notes

, Volume 96, Issue 3–4, pp 575–585 | Cite as

Circular proofs for the Gödel-Löb provability logic

  • D. S. Shamkanov


Sequent calculus for the provability logic GL is considered, in which provability is based on the notion of a circular proof. Unlike ordinary derivations, circular proofs are represented by graphs allowed to contain cycles, rather than by finite trees. Using this notion, we obtain a syntactic proof of the Lyndon interpolation property for GL.


provability logic sequent calculus circular proof the Gödel-Löb logic the Lyndon interpolation property split sequent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Negri, “Proof analysis in modal logic,” J. Philos. Logic 34(5–6), 507–544 (2005).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    F. Poggiolesi, “A purely syntactic and cut-free sequent calculus for the modal logic of provability,” Rev. Symb. Log. 2(4), 593–611 (2009).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    R. Goré and R. Ramanayake, “Valentini’s cut-elimination for provability logic resolved,” Rev. Symb. Log. 5(2), 212–238 (2012).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    J. Brotherston, N. Gorogiannis, and R. L. Petersen, “A generic cyclic theorem prover,” in Programming Languages and Systems, Lecture Notes in Comput. Sci. (Springer-Verlag, Berlin, 2012), Vol. 7705, pp. 350–367.CrossRefGoogle Scholar
  5. 5.
    J. van Benthem, “Modal frame correspondences and fixed-points,” Studia Logica 83(1–3), 133–155 (2006).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    A. Visser, “Löb’s logic meets the µ-calculus,” in Processes, Terms and Cycles: Steps on the Road to Infinity, Lecture Notes in Comput. Sci. (Springer-Verlag, Berlin, 2005), Vol. 3838, pp. 14–25.CrossRefGoogle Scholar
  7. 7.
    L. Alberucci and A. Facchini, “On modal µ-calculus and Gödel-Löb logic,” Studia Logica 91(2), 145–169 (2009).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    D. S. Shamkanov, “Interpolation properties for provability logics GL and GLP,” Trudy Mat. Inst. Steklov 274, 329–342 (2011) [Proc. Steklov Inst.Math. 274, 303–316 (2011)].MathSciNetGoogle Scholar
  9. 9.
    G. Sambin and S. Valentini, “A modal sequent calculus for a fragment of arithmetic,” Studia Logica 39(2–3), 245–256 (1980).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    G. Sambin and S. Valentini, “The modal logic of provability. The sequential approach,” J. Philos. Logic 11(3), 311–342 (1982).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    D. Leivant, “On the proof theory of the modal logic for arithmetic provability,” J. Symbolic Logic 46(3), 531–538 (1981).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    W. W. Tait, “Normal derivability in classical logic,” in The Syntax and Semantics of Infinitary Languages, Lecture Notes in Math. (Springer-Verlag, Berlin, 1986), Vol. 72, pp. 204–236.Google Scholar
  13. 13.
    S. Valentini, “The modal logic of provability: cut-elimination,” J. Philos. Logic 12(4), 471–476 (1983).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    J. Brotherston, Sequent Calculus Proof Systems for Inductive Definitions, PhD Thesis (Univ. of Edinburgh, Edinburgh, 2006).Google Scholar
  15. 15.
    B. Jacobs and J. Rutten, “A tutorial on (co)algebras and (co)induction,” Bull. EATCS 62, 222–259 (1997).MATHGoogle Scholar
  16. 16.
    P. Lindström, “Provability logic-A short introduction,” Theoria 62(1–2), 19–61 (1996).MathSciNetMATHGoogle Scholar
  17. 17.
    C. Smoryński, “Modal logic and self-reference,” in Handbook of Philosophical Logic, Vol. II. Extensions of Classical Logic, Synthese Lib. (Reidel, Dordrecht, 1984), Vol. 165, pp. 441–495.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations