Mathematical Notes

, Volume 96, Issue 3–4, pp 451–453 | Cite as

On the construction of biorthogonal systems for subspaces generated by integral shifts of a single function

  • E. A. Kiselev
  • L. A. Minin
  • I. Ya. Novikov
Short Communications


biorthogonal systems wavelets integral shifts Riesz system spline of order n Jacobi theta function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. C. Kashin and A. A. Saakyan, Orthogonal Series (Izdatel’stvo Nauchno-Issledovatel’skogo Aktuarno-Finansovogo Tsentra (AFTs), Moscow, 1999; translation of the 1st ed.: AMS, Providence, RI, 1989).zbMATHGoogle Scholar
  2. 2.
    I. Ya. Novikov, V. Yu. Protasov, and M. A. Skopina, Wavelet Theory (Fizmatlit, Moscow, 2005; AMS, Providence, RI, 2011).zbMATHGoogle Scholar
  3. 3.
    C. K. Chui, An Introduction to Wavelets (Academic Press, Inc., Boston, MA, 1992; Mir, Moscow, 2001).zbMATHGoogle Scholar
  4. 4.
    A. I. Drobyshev, Foundations of Atomic Spectral Analysis (Izd. SPb. Univ., SPb., 1997) [in Russian].Google Scholar
  5. 5.
    V. Maz’ya and G. Schmidt, Approximate Approximations, in Math. Surveys Monogr. (Amer. Math. Soc., Providence, RI, 2007), Vol. 141.Google Scholar
  6. 6.
    Handbook of Mathematical Functions, with Formulas, Graphs and Mathematical Tables, ed. by M. Abramowitz and I. A. Stegun (National Bureau of Standards, Washington, D. C., 1966; Nauka, Moscow, 1979).Google Scholar
  7. 7.
    M. V. Zhuravlev, E. A. Kiselev, L. A. Minin, and S.M. Sitnik, J.Math. Sci. (N. Y.) 173(2), 231 (2011).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Voronezh State UniversityVoronezhRussia

Personalised recommendations