Advertisement

Mathematical Notes

, Volume 95, Issue 1–2, pp 277–281 | Cite as

Double exponential lower bound for the number of representations of unity by Egyptian fractions

  • S. V. Konyagin
Short Communications

Keywords

Egyptian fraction Egyptian fraction of a rational number Egyptian fraction representation of unity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Robins and Ch. Shute, Rhind Mathematical Papyrus. An Ancient Egyptian Text (British Museum Publ., London, 1987).zbMATHGoogle Scholar
  2. 2.
    L. E. Sigler, Fibonacci’s Liber Abaci, A Translation into Modern English of Leonardo Pisano’s Book of Calculation (Springer-Verlag, New York, 2003).zbMATHGoogle Scholar
  3. 3.
    R. L. Graham, in Erdős Centennial, Bolyai Soc. Math. Stud., On the occasion Paul Erdős 100th anniversary of his birth, János Bolyai Math. Soc., Budapest (Springer, Berlin, 2013), Vol. 25, pp. 289–309.Google Scholar
  4. 4.
    C. Sándor, Period. Math. Hungar. 47(1–2), 215 (2003).CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    A. S. Bang, Zeuthen Tidskr. (5) 4, 70 (1886).zbMATHGoogle Scholar
  6. 6.
    A. Wiman, Arkiv f. Mat., Astr. och Fys. 3(18) (1907).Google Scholar
  7. 7.
    F. Luca and I. E. Shparlinski, Monatsh. Math. 154(1), 59 (2008).CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    L. G. Sathe, J. Indian Math. Soc. (N. S.) 17, 63 (1953); 17, 83 (1953); 18, 27 (1954); 18, 43 (1954).zbMATHMathSciNetGoogle Scholar
  9. 9.
    A. Selberg, J. Indian Math. Soc. (N. S.) 18, 83 (1954).zbMATHMathSciNetGoogle Scholar
  10. 10.
    A. Hildebrand and G. Tenenbaum, DukeMath. J. 56(3), 471 (1988).CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations