Mathematical Notes

, Volume 95, Issue 1–2, pp 245–252 | Cite as

On Turán’s (3,4)-problem with forbidden subgraphs

  • A. A. Razborov


We identify three 3-graphs on five vertices that are missing in all known extremal configurations for Turán’s (3,4)-problem and prove Turán’s conjecture for 3-graphs that are additionally known not to contain any induced copies of these 3-graphs. Our argument is based on an (apparently) new technique of “indirect interpretation” that allows us to retrieve additional structure from hypothetical counterexamples to Turán’s conjecture, but in rather loose and limited sense. We also include two miscellaneous calculations in flag algebras that prove similar results about some other additional forbidden subgraphs.


Turán’s (3, 4)-problem 3-graph hypergraph forbidden subgraph 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Mantel, “Vraagstuk XXVIII,” Wiskundige Opgaven 10, 60–61 (1907).zbMATHGoogle Scholar
  2. 2.
    P. Turán, “Egy gráfelméleti szélsöértékfeladatról,” Mat.és Fiz. Lapok 48, 436–452 (1941).Google Scholar
  3. 3.
    P. Keevash, “Hypergraph Turán Problems,” in London Math. Soc. Lecture Note Ser., Vol. 392: Surveys in Combinatorics (Cambridge Univ. Press, Cambridge, 2011), pp. 83–139.Google Scholar
  4. 4.
    D. de Caen, “The current status of Turán problem on hypergraphs,” in Bolyai Soc. Math. Stud., Vol. 3: Extremal Problems for Finite Sets (János BolyaiMath. Soc., Budapest, 1991), pp. 187–197.Google Scholar
  5. 5.
    F. Chung and L. Lu, “An upper bound for the Turán number t 3(n, 4),” J. Combin. Theory Ser. A 87(2), 381–389 (1999).CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    A. A. Razborov, “On 3-hypergraphs with forbidden 4-vertex configurations,” SIAMJ. DiscreteMath. 24(3), 946–963 (2010).zbMATHMathSciNetGoogle Scholar
  7. 7.
    V. Falgas-Ravry and E. R. Vaughan, “Applications of the semi-definite method to the Turán density problem for 3-graphs,” Combin. Probab. Comput. 22(1), 21–54 (2013).CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    W. G. Brown, “On an open problem of Paul Turán concerning 3-graphs,” in Studies in Pure Mathematics (Birkhäuser Verlag, Basel, 1983), pp. 91–93.CrossRefGoogle Scholar
  9. 9.
    A. V. Kostochka, “A class of constructions for Turán’s (3, 4)-problem,” Combinatorica 2(2), 187–192 (1982).CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    D. G. Fon-Der-Flaass, “Method for construction of (3, 4)-graphs,” Mat. Zametki 44(4), 546–550 (1988) [Math. Notes 44 (4), 781–783 (1988)].MathSciNetGoogle Scholar
  11. 11.
    A. A. Razborov, “On the Fon-Der-Flaas interpretation of extremal examples for Turán’s (3, 4)-problem,” in Trudy Mat. Inst. Steklov, Vol. 274: Algebraic Problems of Algebra and Logic, Collection of papers dedicated to the memory of Academician Sergei Ivanovich Adyan (MAIK, Moscow, 2011), pp. 269–290 [in Russian]; [Proc. Steklov Inst. Math. 274, 247–266 (2011)].Google Scholar
  12. 12.
    O. Pikhurko, “The minimum size of 3-graphs without a 4-set spanning no or exactly three edges,” European J. Combin. 32(7), 1142–1155 (2011).CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    A. A. Razborov, “Flag algebras,” J. Symbolic Logic 72(4), 1239–1282 (2007).CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    R. L. Graham, B. L. Rothschild, and J. H. Spencer, Ramsey Theory, in Wiley-Intersci. Ser. Discrete Math. Optim. (John Wiley & Sons, New York, 1990).Google Scholar
  15. 15.
    Z. Füredi, O. Pikhurko, and M. Simonovits, “The Turán density of the hypergraph {abc, ade, bde, cde},” Electron. J. Combin. 10(Research Paper 18) (2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. A. Razborov
    • 1
    • 2
    • 3
  1. 1.University of ChicagoChicagoUSA
  2. 2.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Toyota Technological InstituteChicagoUSA

Personalised recommendations