Mathematical Notes

, Volume 94, Issue 3–4, pp 590–593 | Cite as

On the resolvent of the gauss operator

  • A. I. Aptekarev
  • V. S. Buyarov
Short Communications


Gauss operator resolvent of the Gauss operator spectrum of the Gauss operator continued fraction Fredholm determinant Weber integral Lipschitz-Hankel integral 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Ya. Khinchin, Continued Fractions (Nauka, Moscow, 1978) [in Russian].Google Scholar
  2. 2.
    V. I. Arnol’d, Continued Fractions (MTsNMO, Moscow, 2000) [in Russian].Google Scholar
  3. 3.
    R. Kuzmin, Atti Congr. Intern. Bologne 6, 83 (1928).Google Scholar
  4. 4.
    E. Wirsing, Acta Arith. 24, 507 (1974).MathSciNetzbMATHGoogle Scholar
  5. 5.
    K. I. Babenko and S. P. Yur’ev, On a Problem of Gauss, Preprinty IPM, No. 63 (1977) [in Russian].Google Scholar
  6. 6.
    K. I. Babenko, Dokl. Akad. Nauk SSSR 238(5), 1021 (1978) [Soviet Math. Dokl. 19, 136 (1978)].MathSciNetGoogle Scholar
  7. 7.
    S. G. Mikhlin, Lectures on Integral Equations (Fizmatgiz, Moscow, 1959) [in Russian].Google Scholar
  8. 8.
    G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge Univ. Press, Cambridge, 1922).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Keldysh Institute of Applied MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations