Advertisement

Mathematical Notes

, Volume 94, Issue 1–2, pp 298–300 | Cite as

On commutative subalgebras of the Weyl algebra related to commuting operators of arbitrary rank and genus

  • O. I. MokhovEmail author
Short Communications

Keywords

commutative algebra Weyl algebra commuting operators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. L. Burchnall and I.W. Chaundy, Proc. London Math. Soc. (2) 21, 420 (1923).MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    J. Dixmier, Bull. Soc. Math. France 96, 209 (1968).MathSciNetzbMATHGoogle Scholar
  3. 3.
    I. M. Krichever, Funktsional. Anal. Prilozhen. 12(3), 20 (1978).MathSciNetzbMATHGoogle Scholar
  4. 4.
    I. M. Krichever and S. P. Novikov, Dokl. Akad. Nauk SSSR 247(1), 33 (1979) [Soviet Math. Dokl. 20, 650 (1979)].MathSciNetGoogle Scholar
  5. 5.
    O. I. Mokhov, in Reports on Theory of Rings, Algebras and Modules, International Conference on Algebra in Memory of A. I. Shirshov (1921-1981), Barnaul, USSR, 20-25 August 1991 (1991), p. 85.Google Scholar
  6. 6.
    O. I. Mokhov, in Third International Conference on Algebra in Memory of M. I. Kargapolov (1928–1976), Krasnoyarsk, Russia, 23–28 August, 1993 (Inoprof, Krasnoyarsk, 1993), p. 421 [in Russian].Google Scholar
  7. 7.
    P. G. Grinevich, Funktsional. Anal. Prilozhen. 16(1), 19 (1982) [Functional Anal. Appl. 16, 15 (1982)].MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    O. I. Mokhov, Uspekhi Mat. Nauk 37(4(226)), 169 (1982) [Russian Math. Surveys 37 (4), 129 (1982)].MathSciNetzbMATHGoogle Scholar
  9. 9.
    O. I. Mokhov, Izv. Akad. Nauk SSSR Ser. Mat. 53(6), 1291 (1989) [Math. USSR-Izv. 35 (3), 629 (1990)].Google Scholar
  10. 10.
    P. Dehornoy, Compositio Math. 43(1), 71 (1981).MathSciNetzbMATHGoogle Scholar
  11. 11.
    A. E. Mironov, Self-Adjoint Commuting Differential Operators and Commutative Subalgebras of the Weyl Algebra, arXiv: 1107.3356 [in Russian].Google Scholar
  12. 12.
    A. E. Mironov, Sib. Elektron.Mat. Izv. 6, 533 (2009).MathSciNetGoogle Scholar
  13. 13.
    A. E. Mironov, Funktsional. Anal. Prilozhen. 39(3), 91 (2005) [Functional Anal. Appl. 39 (3), 240 (2005)].MathSciNetCrossRefGoogle Scholar
  14. 14.
    A. E. Mironov, Mat. Sb. 195(5), 103 (2004) [Sb.Math. 195 (5), 711 (2004)]MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations