Mathematical Notes

, Volume 91, Issue 3–4, pp 339–353 | Cite as

The structure of minimal Steiner trees in the neighborhoods of the lunes of their edges

  • A. O. Ivanov
  • O. A. S″edina
  • A. A. Tuzhilin


We give a complete description of small neighborhoods of the closures of lunes of the edges of Steiner minimal trees (Theorem 1.1); to this end, we prove a generalization of a stabilization theorem for embedded locally minimal trees [1]; the case of two such disjoint trees is considered (Theorem 2.2).


Steiner minimal tree locally minimal tree lune of an edge of a tree linear graph shortest tree 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. O. Ivanov and A. A. Tuzhilin, “Stabilization of locally minimal trees,” Mat. Zametki 86(4), 512–524 (2009) [Math. Notes 86 (4), 483–492 (2009)].MathSciNetGoogle Scholar
  2. 2.
    A. O. Ivanov and A. A. Tuzhilin, The Theory of Extremal Nets (Izd. IKI, Moscow, 2003)] [in Russian].Google Scholar
  3. 3.
    M. R. Garey, R. L. Graham, and D. S. Johnson, “Some NP-complete geometric problems,” in Eighth Annual ACM Symposium on Theory of Computing, Hershey, Pa., 1976 (Assoc. Comput. Mach., New York, 1976), pp. 10–22.CrossRefGoogle Scholar
  4. 4.
    E. N. Gilbert and H. O. Pollak, “Steiner minimal trees,” SIAM J. Appl.Math. 16(1), 1–29 (1968).MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. O. Ivanov
    • 1
  • O. A. S″edina
    • 2
  • A. A. Tuzhilin
    • 1
  1. 1.Moscow State UniversityYaroslavl State UniversityMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations