Advertisement

Mathematical Notes

, 89:382 | Cite as

Weighted identities for solutions of generalized Korteweg-de Vries equations

  • S. I. Pokhozhaev
Article

Abstract

Consider the Korteweg-de Vries equation u t + u xxx + uu x = 0 and its generalization u t + u xxx + f(u)x = 0. For the solutions of these equations, weighted identities (differential and integral) are obtained. These identities make it possible to establish the blow-up (in finite time) of the solutions of certain boundary-value problems.

Keywords

Korteweg-de Vries equation initial boundary-value problem weighted differential inequality weighted integral inequality blow-up of solutions Hölder’s inequality Young’s inequality Dirichlet boundary condition 

References

  1. 1.
    J.-L. Lions, Quelques m éthodes de r ésolution des probl èmes aux limites nonlin éaires (Dunod, Paris, 1969; Mir Moscow, 1972).Google Scholar
  2. 2.
    É. Mitidieri and S. I. Pokhozhaev, “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities,” in Trudy Mat. Inst. Steklov (Nauka, Moscow, 2001), Vol. 234, pp. 3–383 [Proc. Steklov Inst.Math., Vol. 234].Google Scholar
  3. 3.
    J. L. Bona, Shu Ming Sun, and Bing-Yu Zhang, “A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation equation posed on a finite domain,” Comm. Partial Differential Equations 28(7–8), 1391–1436 (2003); “A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation equation posed on a finite domain. II,” J. Differential Equations 247 (9), 2558–2596 (2009).MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    V. A. Bubnov, “Solvability in the large of nonlinear boundary-value problems for the Korteweg-de Vries equation in a bounded domain,” Differ. Uravn. 16(1), 34–41 (1980).MathSciNetMATHGoogle Scholar
  5. 5.
    J. Holmer, “The initial-boundary value problem for the Korteweg-de Vries equation equation,” Comm. Partial Differential Equations 31(8), 1151–1190 (2006).MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Th. Colin and J.-M. Ghidaglia, “An initial-boundary value problem for the Korteweg-de Vries equation equation posed on a finite interval,” Adv. Differential Equations 6(12), 1463–1492 (2001).MathSciNetMATHGoogle Scholar
  7. 7.
    J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, “Sharp global well-posedness for KdV and modified KdV on R and T,” J. Amer.Math. Soc. 16(3), 705–749 (2003).MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    S. I. Pokhozhaev, “Multidimensional scalar conservation laws,” Mat. Sb. 194(1), 147–160 (2003) [Russian Acad. Sci. Sb. Math. 194 (1), 151–164 (2003)].MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations