Advertisement

Mathematical Notes

, Volume 88, Issue 5–6, pp 868–878 | Cite as

Inheritance of properties of spectra

  • D. V. Trushin
Article

Abstract

A mechanism for the inheritance of properties of spectra by differential spectra is developed and applied to prove geometric properties of morphisms of differential algebraic varieties.

Keywords

inheritance of properties of spectra differential algebraic variety prime differential ideal differential spectrum of a ring Keigher ring morphism of differential algebraic varieties differentially finitely generated algebra dominant morphism open map 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. J. Cassidy, “Differential algebraic groups,” Amer. J. Math. 94(3), 891–954 (1972).zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    E. R. Kolchin, Differential Algebra and Algebraic Groups, in Pure Appl. Math. (Academic, New York, 1973), Vol. 54.Google Scholar
  3. 3.
    E. R. Kolchin, Differential Algebraic Groups, in Pure Appl. Math. (Academic, Orlando, FL, 1985), Vol. 114.Google Scholar
  4. 4.
    M. Atiyah and I. Macdonald, Introduction to Commutative Algebra (Addison-Wesley, Reading, Mass., 1969; Faktorial, Moscow, 2003).zbMATHGoogle Scholar
  5. 5.
    I. Kaplansky, An Introduction to Differential Algebra (Hermann, Paris, 1957; Inostrannaya Literatura, Moscow, 1959).zbMATHGoogle Scholar
  6. 6.
    D. V. Trushin, “The ideal of separants in the ring of differential polynomials,” Fundam. Prikl. Mat. 13(1), 215–227 (2007) [J. Math. Sci. (N. Y.) 152 (4), 595–603 (2008)].Google Scholar
  7. 7.
    H. Matsumura, Commutative Algebra, inMath. Lecture Note Ser. (Benjamin/Cummings, Reading, Mass., 1980), Vol. 56.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations