Mathematical Notes

, Volume 88, Issue 5–6, pp 827–843 | Cite as

Affine homogeneity of indefinite real hypersurfaces in the space ℂ3

  • M. S. DanilovEmail author
  • A. V. Loboda


We develop a constructive approach to the problem of describing affinely homogeneous real hypersurfaces in 3-dimensional complex space having nondegenerate sign-indefinite Levi form. We construct the affine invariants of a nondegenerate indefinite hypersurface in terms of second-order jets of its defining function and introduce the notion of the affine canonical equation of this surface. Three main types of canonical equations are considered. For each of these types, we construct a family of Lie algebras related to affinely homogeneous surfaces of a particular type. As a result, a family (depending on two real parameters) of affinely different homogeneous submanifolds of 3-dimensional complex space is presented (as matrix algebras).


affinely homogeneous indefinite hypersurface complex space ℂ3 Lie algebra strictly pseudoconvex hypersurface Levi form Hermitian form canonical equation of an indefinite surface 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Cartan, “Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes,” Ann.Mat. Pura Appl. 11(1), 17–90 (1932).zbMATHMathSciNetGoogle Scholar
  2. 2.
    B. Doubrov, B. Komrakov, and M. Rabinovich, Homogeneous Surfaces in the 3-Dimensional Affine Geometry, Preprint (Oslo, 1995).Google Scholar
  3. 3.
    G. Fels and W. Kaup, “Classification of Levi degenerate homogeneous CR-manifolds in dimension 5,” Acta Math. 201(1), 1–82 (2008).zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    A. V. Loboda, “Some invariants of tubular hypersurfaces in ℂ2,” Mat. Zametki 59(2), 211–223 (1996) [Math. Notes 59 (1–2), 148–157 (1996)].MathSciNetGoogle Scholar
  5. 5.
    A. V. Loboda, “Local description of homogeneous real hypersurfaces of the two-dimensional complex space in terms of their normal equations,” Funktsional. Anal. Prilozhen. 34(2), 33–42 (2000) [Functional Anal. Appl. 34 (2), 106–113 (2000)].MathSciNetGoogle Scholar
  6. 6.
    A. V. Loboda, “Homogeneous strictly pseudoconvex hypersurfaces in ℂ3 with two-dimensional isotropy groups,” Mat. Sb. 192(12), 3–24 (2001) [Russian Acad. Sci. Sb.Math. 192 (12), 1741–1761 (2001)].MathSciNetGoogle Scholar
  7. 7.
    A. V. Loboda, “Homogeneous real hypersurfaces in ℂ3 with two-dimensional isotropy groups,” in TrudyMat. Inst. Steklov, Vol. 235: Analytic and Geometric Questions of Complex Analysis, Collection of papers dedicated to the 70th anniversary of Academician A. G. Vitushkin (Nauka, Moscow, 2001), pp. 114–142 [in Russian] [Proc. Steklov Inst.Math. 235, 107–135 (2001)].Google Scholar
  8. 8.
    A. V. Loboda, “On a family of Lie algebras associated with homogeneous surfaces,” in Trudy Mat. Inst. Steklov, Vol. 253: Complex Analysis and Applications, Collection of papers (Nauka, Moscow, 2006), pp. 111–126 [in Russian] [Proc. Steklov Inst.Math. 253, 100–114 (2006)].Google Scholar
  9. 9.
    A. V. Loboda and A. S. Khodarev, “On a family of affine-homogeneous real hypersurfaces of a three-dimensional complex space,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 10, 38–50 (2003) [Russian Math. (Iz. VUZ) 47 (10), 35–47 (2003)].Google Scholar
  10. 10.
    S. S. Chern and J. K. Moser, “Real hypersurfaces in complex manifolds,” Acta Math. 133(3), 219–271 (1974).CrossRefMathSciNetGoogle Scholar
  11. 11.
    A. V. Loboda, “Determination of affine-homogeneous saddle surfaces in the space ℝ3 by the coefficients of their normal equations,” Mat. Zametki 65(5), 793–797 (1999) [Math. Notes 65 (5–6), 668–672 (1999)].MathSciNetGoogle Scholar
  12. 12.
    M. Eastwood and V. Ezhov, “On affine normal forms and a classification of homogeneous surfaces in affine three-space,” Geom. Dedicata 77(1), 11–69 (1999).zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    R. N. Guzeev and A. V. Loboda, “On normal equations of affinely homogeneous convex surfaces of the space ℝ3,” Izv. Vyssh.Uchebn. Zaved.Mat. No. 3, 25–32 (2001) [RussianMath. (Iz. VUZ) 45 (3), 23–30 (2001)].Google Scholar
  14. 14.
    O. A. Boldyreva and A. V. Loboda, “On the coefficient approach to affine homogeneity,” Vestnik Voronezhsk. Gos. Univ. Ser. Fiz. Mat., No. 1, 105–109 (2006).Google Scholar
  15. 15.
    G. E. Izotov, “Simultaneous reduction of a quadratic and a Hermitian form,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 1, 143–159 (1957).Google Scholar
  16. 16.
    M. S. Danilov, “Affinely homogeneous real hypersurfaces with indefinite Levi form,” in International Workshop on Geometry and Analysis, Abrau-Dyurso, 2008, Abstracts of papers (RGU, Rostov-on-Don, 2008), pp. 25–26 [in Russian].Google Scholar
  17. 17.
    O. A. Boldyreva and A. V. Loboda, “On a family of nonextendable matrix Lie algebras,” Chernozemnyi Almanakh Nuachnykh Issledovanii, No. 1 (5), 89–102 (2007).Google Scholar
  18. 18.
    A. M. Demin and A. V. Loboda, “An example of a two-parameter family of affine-homogeneous real hypersurfaces in ℂ3,” Mat. Zametki 84(5), 791–794 (2008) [Math. Notes 84 (5–6), 737–740 (2008)].MathSciNetGoogle Scholar
  19. 19.
    V. K. Evchenko and A. V. Loboda, “4-dimensional matrix algebras and the affine homogeneity the real hypersurface of the space ℂ3,” Vestnik Voronezhsk. Gos. Univ. Ser. Fiz. Mat., No. 1, 108–118 (2009).Google Scholar
  20. 20.
    D. P. Zhelobenko and A. I. Shtern, Representations of Lie Groups, in Reference Mathematical Library (Nauka, Moscow, 1983) [in Russian].Google Scholar
  21. 21.
    V. K. Beloshapka, “On the dimension of the group of automorphisms of an analytic hypersurface,” Izv. Akad. Nauk SSSR Ser. Mat. 43(2), 243–266 (1979) [Math. USSR-Izv. 14, 223–245 (1980)].zbMATHMathSciNetGoogle Scholar
  22. 22.
    A. V. Loboda, “The action of an affine subgroup in the complex tangential plane to a homogeneous surface,” in Voronezh Winter Mathematical Workshop, Abstracts of papers, (Voronezh, 2009), pp. 106–107 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Voronezh State University of Architecture and ConstructionVoronezhRussia

Personalised recommendations