Mathematical Notes

, Volume 88, Issue 3–4, pp 530–543 | Cite as

On the irrationality exponent of the number ln 2

  • Yu. V. Nesterenko


We propose another method of deriving the Marcovecchio estimate for the irrationality measure of the number ln 2 following, for the most part, the method of proof of the irrationality of the number ζ(3) proposed by the author in 1996. The proof uses single complex integrals, the so-called Meyer G-functions, and is much simpler than that of Marcovecchio.

Key words

irrational number Marcovecchio estimate irrationality measure irrationality exponent Meyer G-function saddle-point method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Kh. Salikhov, “On the irrationality measure of π,” Uspekhi Mat. Nauk 63(3), 163–164 (2008) [Russian Math. Surveys 63 (3), 570–572 (2008)].MathSciNetGoogle Scholar
  2. 2.
    A. Baker, “Approximations to the logarithms of the certain rational numbers,” Acta Arithm. 10, 315–323 (1964).zbMATHGoogle Scholar
  3. 3.
    L. V. Danilov, “Rational approximations of some functions at rational points,” Mat. Zametki 24(4), 449–458 (1978).zbMATHMathSciNetGoogle Scholar
  4. 4.
    K. Alladi and M. Robinson, “On certain irrational values of the logarithm,” in Number theory, Carbondale 1979, Lecture Notes in Math. (Springer-Verlag, Berlin, 1979), Vol. 751, pp. 1–9.CrossRefGoogle Scholar
  5. 5.
    G. V. Choodnovsky [G. V. Chudnovsky], “Approximations rationnelles des logarithmes de nombres rationnels,” C. R. Acad. Sci. Paris Sér. A–B 288(12), 607–609 (1979).zbMATHMathSciNetGoogle Scholar
  6. 6.
    G. V. Chudnovsky, “Number theoretic applications of polynomials with rational coefficients defined by extremality conditions,” in Arithmetic and Geometry Vol. I, Progr. Math. (Birkhäuser Boston, Boston, MA, 1983), Vol. 35, pp. 61–105.Google Scholar
  7. 7.
    G. Rhin, “Approximants de Padé etmesures effectives d’irrationalité,” in Séminaire de Théorie des Nombres, Paris 1985/86, Progr. Math. (Birkhäuser Boston, Boston, MA, 1987), Vol. 71, pp. 155–164.Google Scholar
  8. 8.
    E. A. Rukhadze, “A lower bound for the approximation of ln 2 by rational numbers,” Vestnik Moskov. Univ. Ser. IMat. Mekh., No. 6, 25–29 (1987).Google Scholar
  9. 9.
    M. Hata, “Legendre type polynomials and irrationality measures,” J. Reine Angew. Math. 407, 99–125 (1990).zbMATHMathSciNetGoogle Scholar
  10. 10.
    R. Marcovecchio, “The Rhin-Viola method for log 2,” Acta Arith. 139(2), 147–184 (2009).zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    G. Rhin and C. Viola, “On a permutation group related to ζ(2),” Acta Arith. 77(1), 23–56 (1996).zbMATHMathSciNetGoogle Scholar
  12. 12.
    G. Rhin and C. Viola, “The group structure for ζ(3),” Acta Arith. 97(3), 269–293 (2001).zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Yu. V. Nesterenko, “A few remarks on ζ(3),” Mat. Zametki 59(6), 865–880 (1996) [Math. Notes 59 (5–6), 625–636 (1996)].MathSciNetGoogle Scholar
  14. 14.
    Y. Luke, Mathematical Functions and Their Approximations (Academic Press, New York, 1975; Mir, Moscow, 1980).zbMATHGoogle Scholar
  15. 15.
    E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 3rd ed. (Cambridge Univ. Press, Cambridge, 1927; Fizmatgiz, Moscow, 1963).zbMATHGoogle Scholar
  16. 16.
    M. Hata, “Rational approximations to π and some other numbers,” Acta Arith. 63(4), 335–349 (1993).zbMATHMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations