Advertisement

Mathematical Notes

, Volume 88, Issue 3–4, pp 503–515 | Cite as

Estimates of character sums in finite fields

  • S. V. Konyagin
Article

Abstract

We prove analogs of the Burgess estimates for character sums over n-dimensional segments in the field \( \mathbb{F}_{p^n } \).

Key words

multiplicative character character sum Burgess estimate finite field polar lattice Weil estimate Hölder’s inequality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. A. Burgess, “On character sums and primitive roots,” Proc. London Math. Soc. (3) 12, 179–192 (1962).zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    D. A. Burgess, “Character sums and primitive roots in finite fields,” Proc. Lond. Math. Soc. (3) 17, 11–25 (1967).zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    A. A. Karatsuba, “Character sums and primitive roots in finite fields,” Dokl. Akad. Nauk SSSR 180(6), 1287–1289 (1968) [SovietMath. Dokl. 9, 755–757 (1968)].MathSciNetGoogle Scholar
  4. 4.
    A. A. Karatsuba, “On estimates of character sums,” Izv. Akad. Nauk SSSR Ser. Mat. 34(1), 20–30 (1970) [Math. USSR-Izv. 4, 19–29 (1970)].MathSciNetGoogle Scholar
  5. 5.
    H. Davenport and D. J. Lewis, “Character sums and primitive roots in finite fields,” Rend. Circ. Mat. Palermo (2) 12(2), 129–136 (1963).zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    M.-Ch. Chang, “On a question of Davenport and Lewis and new character sum bounds in finite fields,” Duke Math. J. 145(3), 409–442 (2008).zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    M.-Ch. Chang, Burgess Inequality in \( \mathbb{F}_{p^2 } \), Preprint, 2009.Google Scholar
  8. 8.
    T. Tao and V. Vu, Additive Combinatorics, in Cambridge Stud. Adv. Math. (Cambridge Univ. Press, Cambridge, 2006), Vol. 105.Google Scholar
  9. 9.
    W. Banaszczyk, “Inequalities for convex bodies and polar reciprocal lattices in ℝn,” Discrete Comput. Geom. 13(2), 217–231 (1995).zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    W. M. Schmidt, Equations over Finite Fields: An Elementary Approach, in Lecture Notes in Math. (Springer-Verlag, Berlin, 1976), Vol. 536.zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations