Advertisement

Mathematical Notes

, Volume 88, Issue 3–4, pp 374–385 | Cite as

Short Kloosterman sums with weights

  • M. A. KorolevEmail author
Article

Abstract

We obtain a new estimate for Kloosterman sums with weights in which the number of summands is significantly less than any arbitrarily small fixed power of the modulus.

Key words

Kloosterman sum with weight prime number Euler function Möbius function square-free number 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Korolev, “Incomplete Kloosterman sums and their applications,” Izv. Ross. Akad. Nauk Ser. Mat. 64(6), 41–64 (2000) [Russian Acad. Sci. Izv. Math. 64 (6), 1129–1152 (2000)].MathSciNetGoogle Scholar
  2. 2.
    A. A. Karatsuba, “The distribution of inverses in a residue ring modulo a given modulus,” Dokl. Ross. Akad. Nauk 333(2), 138–139 (1993) [Russian Acad. Sci. Dokl. Math. 48 (3), 452–454 (1994)].Google Scholar
  3. 3.
    A. A. Karatsuba, “Fractional parts of functions of a special form,” Izv. Ross. Akad. Nauk Ser. Mat. 59(4), 61–80 (1995) [Russian Acad. Sci. Izv. Math. 59 (4), 721–740 (1995)].MathSciNetGoogle Scholar
  4. 4.
    A. A. Karatsuba, “Analogs of Kloostermans sums,” Izv. Ross. Akad. Nauk Ser. Mat. 59(5), 93–102 (1995) [Russian Acad. Sci. Izv. Math. 59 (5), 971–981 (1995)].MathSciNetGoogle Scholar
  5. 5.
    A. A. Karatsuba, “Sums of fractional parts of functions of a special form,” Dokl. Ross. Akad. Nauk 349(3), 302 (1996) [Russian Acad. Sci. Dokl. Math. 54 (1), 541 (1996)].MathSciNetGoogle Scholar
  6. 6.
    A. A. Karatsuba, “The analogs of the incomplete Kloosterman sums and their applications,” Tatra Mt. Math. Publ. 11, 89–120 (1997).zbMATHMathSciNetGoogle Scholar
  7. 7.
    A. A. Karatsuba, “Kloosterman double sums,” Mat. Zametki 66(5), 682–687 (1999) [Math. Notes 66 (5–6), 565–569 (1999)].MathSciNetGoogle Scholar
  8. 8.
    E. Landau, “Bemerkungen zu Herrn D. N. Lehmer’s Abhandlung in Bd. 22 dieses Journals, S. 293–335,” Amer. J. Math. 26(3), 209–222 (1904).zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    K. Prakhar, Primzahlverteilung (Springer-Verlag, Berlin-Heidelberg, 1957; Mir, Moscow, 1967).Google Scholar
  10. 10.
    I.M. Vinogradov, Foundations of the Theory of Numbers (Nauka, Moscow, 1981) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesSteklovRussia

Personalised recommendations