Mathematical Notes

, Volume 88, Issue 1–2, pp 160–164 | Cite as

Applications of inequalities of Lieb-Thirring type to spectral theory

  • D. S. BarsegyanEmail author


Inequalities of Lieb-Thirring type are established. Applications of these inequalities to estimates of the spectrum of unbounded operators are given.

Key words

Lieb-Thirring inequalities spectral theory of operators unbounded operator Laplace operator Legendre transformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. S. Barsegyan, “On the possibility of strengthening the Lieb-Thirring inequality,” Mat. Zametki 86(6), 803–818 (2009) [Math. Notes 86 (5–6), 753–766 (2009)].MathSciNetGoogle Scholar
  2. 2.
    B. S. Kashin, “On a class of inequalities for orthonormal systems,” Mat. Zametki 80(2), 204–208 (2006) [Math. Notes 80 (1–2), 199–203 (2006)].MathSciNetGoogle Scholar
  3. 3.
    E. H. Lieb and W. E. Thirring, “Inequalities for themoments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities,” in Studies in Mathematical Physics. Essays in Honor of Valentine Bargmann (Princeton Univ. Press, Princeton, NJ, 1976), pp. 269–303.Google Scholar
  4. 4.
    A. A. Il’in, “Lieb-Thirring integral inequalities and their applications to attractors of Navier-Stokes equations,” Mat. Sb. 196(1), 33–66 (2005) [Russian Acad. Sci. Sb. Math. 196 (1), 29–61 (2005)].MathSciNetGoogle Scholar
  5. 5.
    S. V. Astashkin, “Lieb-Thirring inequality for L p norms,” Mat. Zametki 83(2), 163–169 (2008) [Math. Notes 83 (1–2), 145–151 (2008)].MathSciNetGoogle Scholar
  6. 6.
    A. M. Molchanov, “On conditions for the discreteness of the spectrum of self-adjoint differential operators of second order,” in Trudy Moskov. Mat. Obshch. (Izd. Moskov. Univ., Moscow, 1953), Vol. 2, pp. 169–199 [in Russian].Google Scholar
  7. 7.
    Mathematical Encyclopedia (Sovetskaya Entsiklopediya, Moscow, 1982), Vol. 3 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations