Mathematical Notes

, Volume 87, Issue 3–4, pp 355–366

Farthest points and strong convexity of sets

Article

Abstract

We consider the existence and uniqueness of the farthest point of a given set A in a Banach space E from a given point x in the space E. It is assumed that A is a convex, closed, and bounded set in a uniformly convex Banach space E with Fréchet differentiable norm. It is shown that, for any point x sufficiently far from the set A, the point of the set A which is farthest from x exists, is unique, and depends continuously on the point x if and only if the set A in the Minkowski sum with some other set yields a ball. Moreover, the farthest (from x) point of the set A also depends continuously on the set A in the sense of the Hausdorff metric. If the norm ball of the space E is a generating set, these conditions on the set A are equivalent to its strong convexity.

Key words

optimization problem farthest points strong convexity of a set Banach space Fréchet differentiable norm Minkowski sum Hausdorff metric metric antiprojection antisun 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Asplund, “Farthest points in reflexive locally uniformly rotund Banach spaces,” Israel J. Math. 4(4), 213–216 (1966).MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    M. Edelstein, “Fathest points of sets in uniformly convex Banach spaces,” Israel J. Math. 4(3), 171–176 (1966).MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    N. V. Zhivkov, “Metric projections and antiprojections in strictly convex normed spaces,” C. R. Acad. Bulgare Sci. 31(4), 369–372 (1978).MATHMathSciNetGoogle Scholar
  4. 4.
    S. Fitzpatrick, “Metric projections and the differentiability of distance functions,” Bull. Austral. Math. Soc. 22(2), 291–312 (1980).MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    M. V. Balashov and G. E. Ivanov, “On the farthest points of sets,” Mat. Zametki 80(2), 163–170 (2006) [Math. Notes 80 (1–2), 159–166 (2006)].MathSciNetGoogle Scholar
  6. 6.
    N. V. Efimov and S. B. Stechkin, “Some properties of Chebyshev sets,” Dokl. Akad. Nauk SSSR 118(1), 17–19 (1958).MATHMathSciNetGoogle Scholar
  7. 7.
    L. P. Vlasov, “Approximative properties of sets in normed linear spaces,” Uspekhi Mat. Nauk 28(6), 3–66 (1973) [Russian Math. Surveys 28 (6), 1–66 (1973)].MATHMathSciNetGoogle Scholar
  8. 8.
    V. S. Balaganskii and L. P. Vlasov, “The problem of convexity of Chebyshev sets,” Uspekhi Mat. Nauk 51(6), 125–188 (1996) [Russian Math. Surveys 51 (6), 1127–1190 (1996)].MathSciNetGoogle Scholar
  9. 9.
    J. M. Borwein, “Proximality and Chebyshev sets,” Optim. Lett. 1(1), 21–32 (2007).MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    A. R. Alimov and M. I. Karlov, “Sets with external Chebyshev layer,” Mat. Zametki 69(2), 303–307 (2001) [Math. Notes 69 (1–2), 269–273 (2001)].MathSciNetGoogle Scholar
  11. 11.
    E. S. Polovinkin and M. V. Balashov, Elements of Convex and Strongly Convex Analysis (Fizmatlit, Moscow, 2007) [in Russian].MATHGoogle Scholar
  12. 12.
    F.H. Clarke, R. J. Stern, and P. R. Wolenski, “Proximal smoothness and the lower-C 2 property,” J. Convex Anal. 2(1–2), 117–144 (1995).MATHMathSciNetGoogle Scholar
  13. 13.
    F. Bernard, L. Thibault, and N. Zlateva, “Characterizations of prox-regular sets in uniformly convex Banach spaces,” J. Convex Anal. 13(3–4), 525–559 (2006).MATHMathSciNetGoogle Scholar
  14. 14.
    J. Diestel, Geometry of Banach Spaces: Selected Topics, in Lecture Notes in Mathematics (Springer-Verlag, Berlin-Heidelberg-New York, 1975; Vishcha Shkola, Kiev, 1980), Vol. 485.Google Scholar
  15. 15.
    S. V. Konyagin, “On approximation properties of closed sets in Banach spaces and the characterization of strongly convex spaces,” Dokl. Akad. Nauk SSSR 251(2), 276–280 (1980) [Soviet Math. Dokl. 21, 418–422 (1980)].MathSciNetGoogle Scholar
  16. 16.
    S. B. Stechkin, “Approximation properties of sets in linear normed spaces,” in S. B. Stechkin, Selected Works in Mathematics (Fizmatlit, Moscow, 1998), pp. 270–281 [in Russian].Google Scholar
  17. 17.
    M. V. Balashov and G. E. Ivanov, “Weakly convex and proximally smooth sets in Banach spaces,” Izv. Ross. Akad. Nauk Ser. Mat. 73(3), 23–66 (2009) [Russian Acad. Sci. Izv. Math. 73 (3), 455–499 (2009)].MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Moscow Institute of Physics and TechnologyMoscowRussia

Personalised recommendations