Advertisement

Mathematical Notes

, Volume 86, Issue 5–6, pp 892–894 | Cite as

Algebraic cones

  • V. L. Popov
Short Communications
  • 67 Downloads

Key words

algebraic cone monoid action group action orbit action with unique fixed point algebra automorphism stable ideal irreducible algebraic variety 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Mumford and J. Fogarty, Geometric Invariant Theory, in Ergeb. Math. Grenzgeb. (Springer-Verlag, Berlin, 1982), Vol. 34.Google Scholar
  2. 2.
    A. Borel, Linear Algebraic Groups in Grad. Texts in Math., 2nd ed., (Springer-Verlag, New York, 1991), Vol. 126.Google Scholar
  3. 3.
    É. B. Vinberg and V. L. Popov, in Current Problems in Mathematics: Fundamental Directions, Vol. 55: Algebraic Geometry-4, Itogi Nauki i Tekhniki (VINITI, Moscow, 1989), p. 137 [in Russian].Google Scholar
  4. 4.
    A. Grothendieck, in Classification des groupes de Lie alg ébriques, Séminaire Claude Chevalley, 1956–1958 (Secrétariat mathématique, Paris, 1958), Vol. 1, Exp. no. 5.Google Scholar
  5. 5.
    H. Sumihiro, J.Math. Kyoto Univ. 14, 1 (1974).zbMATHMathSciNetGoogle Scholar
  6. 6.
    V. L. Popov, Mat. Zametki 23(2), 183 (1978) [Math. Notes 23 (1–2), 102 (1978)].zbMATHMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesSteklovRussia

Personalised recommendations