Advertisement

Mathematical Notes

, 86:530 | Cite as

Approximation of continuous functions on complex Banach spaces

  • M. A. MitrofanovEmail author
Article
  • 59 Downloads

Abstract

We prove a complex analog of Kurzweil’s theorem on the approximation of continuous functions on separable Banach spaces admitting a separating polynomial and obtain a complex analog of new results due to Boiso and Hájek.

Key words

analytic approximation uniform continuity Banach space uniform convergence analytic function polyadditive mapping antilinear functional symmetric linear operator 

References

  1. 1.
    A. S. Nemirovskii and S. M. Semenov, “The polynomial approximation of functions on Hilbert space,” Mat. Sb. 92(2), 257–281 (1973) [Math. USSR-Sb. 21 (2), 255–277 (1973)].MathSciNetGoogle Scholar
  2. 2.
    J. Kurzweil, “On approximation in real Banach spaces,” Studia Math. 14, 214–231 (1955).zbMATHMathSciNetGoogle Scholar
  3. 3.
    R. M. Aron and J. B. Prolla, “Polynomial approximation of differentiable functions on Banach spaces,” J. Reine Angew. Math. 313, 195–216 (1980).zbMATHMathSciNetGoogle Scholar
  4. 4.
    J. Lesmes, “On the approximation of continuously differentiable functions in Hilbert spaces,” Rev. Colombiana Mat. 8, 217–223 (1974).zbMATHMathSciNetGoogle Scholar
  5. 5.
    L. Nachbin, “Sur les algèbres denses de fonctions diffèrentiables sur une variété,” C. R. Acad. Sci. Paris 228, 1549–1551 (1949).zbMATHMathSciNetGoogle Scholar
  6. 6.
    M. Cepedello Boiso and P. Hájek, “Analytic approximations of uniformly continuous functions in real Banach spaces,” J. Math. Anal. Appl. 256(1), 80–98 (2001).zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    S. Dineen, Complex Analysis on Infinite-Dimensional Spaces (Springer-Verlag, London, 1999).zbMATHGoogle Scholar
  8. 8.
    J. Mujica, Complex Analysis in Banach Spaces: Holomorphic Functions and Domains of Holomorphy in Finite and Infinite Dimensions (North-Holland, Amsterdam, 1986).zbMATHGoogle Scholar
  9. 9.
    W. Rudin, Function Theory in the Unit Ball ofn (Springer-Verlag, New York-Berlin, 1980; Mir, Moscow, 1984).Google Scholar
  10. 10.
    A. B. Aleksandrov, “Function theory in the ball,” in Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat. Fundam. Napravleniya (VINITI, Moscow, 1985), Vol. 8, pp. 115–190 [in Russian].Google Scholar
  11. 11.
    R. S. Martin, Contributions to the Theory of Functionals, Ph. D. Thesis (California Institute of Technology, 1932).Google Scholar
  12. 12.
    N. Dunford and J. T. Schwartz, Linear Operators, Vol. 1: General Theory (Interscience, New York-London, 1958; Inostr. Lit., Moscow, 1962).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Institute for Applied Problems of Mechanics and MathematicsLvivUkraine

Personalised recommendations