Mathematical Notes

, 86:361

Banach algebras associated with linear operator pencils



A direct relationship between the theory of pseudoresolvents and the spectral theory of linear operator pencils is established.

Key words

differential equation not solved with respect to derivatives operator pencil resolvent spectrum pseudoresolvent maximal pseudoresolvent Banach algebra 


  1. 1.
    M. G. Krein and G. K. Langer, “Certain mathematical principles of the linear theory of damped vibrations of continua,” in Application of Theory of Functions in Continuum Mechanics, Proceedings of International Symposium, Tbilisi, 1963, Vol. 2: Fluid and Gas Mechanics, Mathematical Methods (Nauka, Moscow, 1965), pp. 283–322 [in Russian].Google Scholar
  2. 2.
    N. I. Radbel’ and A. G. Rutkas, “Linear Operator Pencils and Noncanonical Systems,” Teor. Funktsii, Funktsional. Anal. i Prilozhen. 17, 3–14 (1973).MathSciNetGoogle Scholar
  3. 3.
    A. G. Rutkas, “The Cauchy problem for the equation Ax′(t) + Bx(t) = f(t),” Differ.’nye Uravn. 11(11), 1996–2010 (1975).MATHMathSciNetGoogle Scholar
  4. 4.
    M. Povoas, “On some singular hyperbolic evolution equations,” J. Math. Pures Appl. (9) 60(2), 133–192 (1981).MATHMathSciNetGoogle Scholar
  5. 5.
    A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces, in Monogr. Textbooks Pure Appl.Math. (Marcel Dekker, New York, 1999), Vol. 215.Google Scholar
  6. 6.
    A. G. Baskakov and K. I. Chernyshov, “Spectral analysis of linear relations, and degenerate semigroups of operators,” Mat. Sb. 193(11), 3–42 (2002) [Sb.Math. 193 (11), 1573–1610 (2002)].MathSciNetGoogle Scholar
  7. 7.
    F. R. Gantmacher (Gantmakher), The Theory of Matrices (English translation of 1st Russian ed.: Chelsea, New York, 1959; Russian original, 4th ed.: Fizmatgiz, Moscow, 1967).Google Scholar
  8. 8.
    V. V. Ditkin, “Some spectral properties of a bundle of linear operators in Banach space,” Mat. Zametki 22(6), 847–857 (1977) [Math. Notes, 22 (5–6), 965–971 (1977)].MATHMathSciNetGoogle Scholar
  9. 9.
    V. V. Ditkin, “Certain spectral properties of a pencil of linear bounded operators,” Mat. Zametki 31(1), 75–79 (1982) [Math. Notes 31 (1–2), 39–41 (1982)].MathSciNetGoogle Scholar
  10. 10.
    A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils (Shtiintsa, Kishinev, 1986) [in Russian].MATHGoogle Scholar
  11. 11.
    G. A. Sviridyuk, “On the general theory of operator semigroups,” UspekhiMat. Nauk 49(4), 47–74 (1994) [Russian Math. Surveys 49 (4), 45–74 (1994)].MathSciNetGoogle Scholar
  12. 12.
    V. E. Fedorov, “Degenerate strongly continuous semigroups of operators,” Algebra Anal. 12(3), 173–200 (2001) [St. Petersbg. Math. J. 12 (3), 471–489 (2001)].Google Scholar
  13. 13.
    R. Cross, Multivalued Linear Operators, in Monogr. Textbooks Pure Appl. Math. (Marcel Dekker, New York, 1998), Vol. 213.Google Scholar
  14. 14.
    I. Gohberg, S. Goldberg, and M. A. Kaashoek, Classes of Linear Operators. I, in Oper. TheoryAdv. Appl. (Birkhäuser, Basel, 1990), Vol. 49.Google Scholar
  15. 15.
    F. Stummel, “Diskrete Konvergenz linearer Operatoren. II,” Math. Z. 120, 231–264 (1971).MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    N. Bourbaki, Théories spectrales, inÉléments de mathématique (Hermann, Paris, 1967; Mir, Moscow, 1972).Google Scholar
  17. 17.
    W. Rudin, Functional Analysis (McGraw-Hill, New York, 1973; Mir, Moscow, 1975).MATHGoogle Scholar
  18. 18.
    E. Hille and R. S. Phillips, Functional Analysis and Semigroups, in Colloquium Publications (Amer. Math. Soc., Providence, RI, 1957; Inostr. Lit., Moscow, 1962).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Voronezh State UniversityVoronezhRussia

Personalised recommendations