Mathematical Notes

, Volume 86, Issue 1–2, pp 286–289 | Cite as

There are only finitely many classes of Markov partitions for pseudo-Anosov diffeomorphisms of surfaces

  • A. V. Klimenko
Short Communications

Key words

Markov partition Anosov diffeomorphism pseudo-Anosov diffeomorphism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. J. Casson and S. A. Bleiler, Automorphisms of Surfaces after Nielsen and Thurston, Vol. 9 in London Mathematical Society Student Texts (Cambridge Univ. Press, Cambridge, 1988; FAZIS,Moscow, 1998).Google Scholar
  2. 2.
    R. L. Adler and B. Weiss, Proc. Nat. Acad. Sci. USA 57(6), 1573 (1967).zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    A. B. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems (Cambridge Univ. Press, Cambridge, 1995; Faktorial,Moscow, 1999).zbMATHGoogle Scholar
  4. 4.
    A. Fathi, F. Laudenbach, and V. Poenaru, Travaux de Thurston sur les surfaces. Séminaire Orsay, in Astérisque (Soc.Math. France, Paris, 1979), Vol. 66–67.Google Scholar
  5. 5.
    D. Ornstein, Adv. in Math. 4(3), 337 (1970).zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    R. Bowen, Amer. J. Math. 92(3), 725 (1970).zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    R. Bowen, in Methods of Symbolic Dynamics, translated in Mathematics: Collection of Translations (Mir, Moscow, 1979), Vol. 13, pp. 9–92 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesSteklovRussia

Personalised recommendations