Mathematical Notes

, Volume 85, Issue 5–6, pp 877–885

Effectivization of a lower bound for ‖(4/3)k

  • Yu. A. Pupyrev
Article

Abstract

We obtain an effective lower bound for ‖(4/3)k‖, where ‖·‖ denotes the distance to the nearest integer.

Key words

Waring’s problem effective lower bound effective constant Beukers estimate Padé approximation Stirling’s formula 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Mahler, “On the fractional parts of powers of real numbers (II),” Mathematika 4, 122–124 (1957).MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    A. Baker and J. Coates, “Fractional parts of powers of rationals,” Math. Proc. Cambridge Philos. Soc. 77, 269–279 (1975).MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    F. Beukers, “Fractional parts of powers of rationals,” Math. Proc. Cambridge Philos. Soc. 90(1), 13–20 (1981).MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    A. K. Dubitskas, “A lower bound for the quantity ‖(3/2)k‖,” Uspekhi Mat. Nauk 45(4), 153–154 (1990) [RussianMath. Surveys 45 (4), 163–164 (1990)].MathSciNetGoogle Scholar
  5. 5.
    F. Delmer and J.-M. Deshouillers, “The computation of g(k) in Waring’s problem,” Math. Comp. 54(190), 885–893 (1990).MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    J. Kubina and M. Wunderlich, “Extending Waring’s conjecture up to 471 600 000,” Math. Comp. 55(192), 815–820 (1990).MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    M. A. Bennett, “Fractional parts of powers of rational numbers,” Math. Proc. Cambridge Philos. Soc. 114(2), 191–201 (1993).MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    M. A. Bennett, “An ideal Waring problem with restricted summands,” Acta Arith. 66(2), 125–132 (1994).MATHMathSciNetGoogle Scholar
  9. 9.
    L. Habsieger, “Explicit lower bounds for ‖(3/2)k‖,” Acta Arith. 106(3), 299–309 (2003).MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    W. Zudilin, “A new lower bound for ‖(3/2)k‖,” J. Théor. Nombres Bordeaux 19(1), 311–323 (2007).MATHMathSciNetGoogle Scholar
  11. 11.
    L. Schoenfeld, “Sharper bounds for the Chebyshev function θ(x) and ψ(x). II,” Math. Comp. 30(134), 337–360 (1976).MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • Yu. A. Pupyrev
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations