Advertisement

Mathematical Notes

, Volume 85, Issue 5–6, pp 877–885 | Cite as

Effectivization of a lower bound for ‖(4/3) k

  • Yu. A. Pupyrev
Article

Abstract

We obtain an effective lower bound for ‖(4/3) k ‖, where ‖·‖ denotes the distance to the nearest integer.

Key words

Waring’s problem effective lower bound effective constant Beukers estimate Padé approximation Stirling’s formula 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Mahler, “On the fractional parts of powers of real numbers (II),” Mathematika 4, 122–124 (1957).zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    A. Baker and J. Coates, “Fractional parts of powers of rationals,” Math. Proc. Cambridge Philos. Soc. 77, 269–279 (1975).zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    F. Beukers, “Fractional parts of powers of rationals,” Math. Proc. Cambridge Philos. Soc. 90(1), 13–20 (1981).zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    A. K. Dubitskas, “A lower bound for the quantity ‖(3/2)k‖,” Uspekhi Mat. Nauk 45(4), 153–154 (1990) [RussianMath. Surveys 45 (4), 163–164 (1990)].MathSciNetGoogle Scholar
  5. 5.
    F. Delmer and J.-M. Deshouillers, “The computation of g(k) in Waring’s problem,” Math. Comp. 54(190), 885–893 (1990).zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    J. Kubina and M. Wunderlich, “Extending Waring’s conjecture up to 471 600 000,” Math. Comp. 55(192), 815–820 (1990).zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    M. A. Bennett, “Fractional parts of powers of rational numbers,” Math. Proc. Cambridge Philos. Soc. 114(2), 191–201 (1993).zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    M. A. Bennett, “An ideal Waring problem with restricted summands,” Acta Arith. 66(2), 125–132 (1994).zbMATHMathSciNetGoogle Scholar
  9. 9.
    L. Habsieger, “Explicit lower bounds for ‖(3/2)k‖,” Acta Arith. 106(3), 299–309 (2003).zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    W. Zudilin, “A new lower bound for ‖(3/2)k‖,” J. Théor. Nombres Bordeaux 19(1), 311–323 (2007).zbMATHMathSciNetGoogle Scholar
  11. 11.
    L. Schoenfeld, “Sharper bounds for the Chebyshev function θ(x) and ψ(x). II,” Math. Comp. 30(134), 337–360 (1976).zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • Yu. A. Pupyrev
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations