Mathematical Notes

, Volume 85, Issue 5–6, pp 623–629 | Cite as

On the factoriality of Cox rings

  • I. V. Arzhantsev


The generalized Cox construction associates with an algebraic variety a remarkable invariant—its total coordinate ring, or Cox ring. In this note, we give a new proof of the factoriality of the Cox ring when the divisor class group of the variety is finitely generated and free. The proof is based on the notion of graded factoriality. We show that if the divisor class group has torsion, then the Cox ring is again factorially graded, but factoriality may be lost.

Key words

total coordinate ring Cox ring algebraic variety factorial ring graded factoriality divisor class group torsion Weil divisor Cartier divisor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. A. Cox, “The homogeneous coordinate ring of a toric variety,” J. Algebraic Geom. 4(1), 17–50 (1995).zbMATHMathSciNetGoogle Scholar
  2. 2.
    F. Berchtold and J. Hausen, “Homogeneous coordinates for algebraic varieties,” J. Algebra 266(2), 636–670 (2003).zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    J. Elizondo, K. Kurano, and K. Watanabe, “The total coordinate ring of a normal projective variety,” J. Algebra 276(2), 625–637 (2004).zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    J. Hausen, Cox Rings and Combinatorics, II, arXiv: math. AG/0801.3995.Google Scholar
  5. 5.
    D. A. Timashev, Homogeneous Spaces and Equivariant Embeddings, arXiv: math. AG/0602228.Google Scholar
  6. 6.
    F. Knop, H. Kraft, D. Luna, and Th. Vust, Algebraische Transformationsgruppen und Invariantentheorie, in DMV Sem. (Birkhäuser, Basel, 1989), Vol. 13, pp. 63–75.Google Scholar
  7. 7.
    F. D. Grosshans, Algebraic Homogeneous Spaces and Invariant Theory, in Lecture Notes in Math. (Springer-Verlag, Berlin, 1997), Vol. 1673.Google Scholar
  8. 8.
    P. Samuel, Lectures on Unique Factorization Domains, in Notes by M. Pavman Murthy. Tata Inst. Fund. Res. Lectures on Math. (Tata Institute of Fundamental Research, Bombay, 1964), Vol. 30.Google Scholar
  9. 9.
    V. L. Popov, “Picard group of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles,” Izv. Akad. Nauk SSSR Ser. Mat. 38(2), 294–322 (1974) [Math. USSR-Izv. 8 (2), 301–327 (1974)].zbMATHMathSciNetGoogle Scholar
  10. 10.
    I. V. Arzhantsev and J. Hausen, “On embeddings of homogeneous spaces with small boundary,” J. Algebra 304(2), 950–988 (2006).zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    M. Brion, “The total coordinate ring of a wonderful variety,” J. Algebra 313(1), 61–99 (2007).zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations