Advertisement

Mathematical Notes

, Volume 84, Issue 3–4, pp 435–438 | Cite as

On the Freiman theorem in finite fields

  • S. V. Konyagin
Short Communications

Key words

Freiman theorem set addition finite field Abelian group Hamming metric arithmetic progression doubling constant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. A. Freiman, Elements of a Structural Theory of Set Addition (Kazan. Gosudarstv. Ped. Inst-Elabuz. Gosudarstv. Ped. Inst., Kazan, 1966; Amer. Math. Soc., Providence, RI, 1973).Google Scholar
  2. 2.
    I. Ruzsa, in Structure Theory of Set Addition, Astérisque (Soc. Math. France, Paris, 1999), Vol. 258, pp. 323–326.Google Scholar
  3. 3.
    J. M. Deshoulliers, F. Hennecart and A. Plagne, Combinatorica 24(1), 53 (2004).CrossRefMathSciNetGoogle Scholar
  4. 4.
    B. J. Green and I. Z. Ruzsa, Bull. London Math. Soc. 38(1), 43 (2006).zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    T. Sanders, A Note of Freiman’s Theorem in Vector Spaces, arXiv: math/0605523.Google Scholar
  6. 6.
    B. Green and T. Tao, Freiman’s Theorem in Finite Fields via Extremal Set Theory, arXiv: math/0703668.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations