Advertisement

Mathematical Notes

, Volume 84, Issue 1–2, pp 280–289 | Cite as

Birational rigidity and ℚ-factoriality of a singular double cover of a quadric branched over a divisor of degree 4

  • K. A. Shramov
Article
  • 56 Downloads

Abstract

We prove birational rigidity and calculate the group of birational automorphisms of a nodal ℚ-factorial double cover X of a smooth three-dimensional quadric branched over a quartic section. We also prove that X is ℚ-factorial provided that it has at most 11 singularities; moreover, we give an example of a non-ℚ-factorial variety of this type with 12 simple double singularities.

Key words

birational geometry Mori fibration birational automorphism birational rigidity Fano variety quartic sextic superrigidity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Matsuki, Introduction to the Mori Program, in Universitext (Springer-Verlag, New York, 2002).Google Scholar
  2. 2.
    A. Corti, “Singularities of linear systems and 3-fold birational geometry,” in London Math. Soc. Lecture Note Ser., Vol. 281: Explicit Birational Geometry of 3-Folds (Cambridge Univ. Press, Cambridge, 2000), pp. 259–312.Google Scholar
  3. 3.
    A. Pukhlikov, “Essentials of the method of maximal singularities,” in LondonMath. Soc. Lecture Note Ser., Vol. 281: Explicit Birational Geometry of 3-Folds (Cambridge Univ. Press, Cambridge, 2000), pp. 73–100.Google Scholar
  4. 4.
    V. A. Iskovskikh, “Anticanonical models of three-dimensional algebraic varieties,” in Itogi Nauki Tekh. Sovrem. Probl. Mat. (VINITI, Moscow, 1979), Vol. 12, pp. 59–157 [J. SovietMath. 13, 745–814 (1980)].Google Scholar
  5. 5.
    V. A. Iskovskikh and Yu. I. Manin, “Three-dimensional quartics and counterexamples to the Lüroth problem,” Mat. Sb. 86(1), 140–166 (1971) [Math. USSR-Sb. 15 (1), 141–166 (1971)].MathSciNetGoogle Scholar
  6. 6.
    V. A. Iskovskikh, “Birational automorphisms of three-dimensional algebraic varieties,” in Itogi Nauki Tekh. Sovrem. Probl. Mat. (VINITI, Moscow, 1979), Vol. 12, pp. 159–236 [J. SovietMath. 13, 815–867 (1980)].Google Scholar
  7. 7.
    V. A. Iskovskikh and A. V. Pukhlikov, “Birational automorphisms of multidimensional algebraic varieties,” in Itogi Nauki Tekh. Sovrem. Probl. Mat. (VINITI, Moscow, 2001), Vol. 19, pp. 5–139 [in Russian].Google Scholar
  8. 8.
    A. V. Pukhlikov, “Birational automorphisms of three-dimensional quartic with an elementary singularity,” Mat. Sb. 135(4), 472–496 (1988) [Russian Acad. Sci. Sb.Math. 63, 457–482 (1989)].Google Scholar
  9. 9.
    I. Cheltsov and J. Park, Sextic Double Solids, arXiv: math/0404452v2.Google Scholar
  10. 10.
    M. Mella, “Birational geometry of quartic 3-folds. II: The importance of being Q-factorial,” Math. Ann. 330(1), 107–126 (2004).zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    M. M. Grinenko, “Birational automorphisms of a three-dimensional double quadric with an elementary singularity,” Mat. Sb. 189(1), 101–118 (1998) [Russian Acad. Sci. Sb.Math. 189, 97–114 (1998)].zbMATHMathSciNetGoogle Scholar
  12. 12.
    M. M. Grinenko, “Birational automorphisms of a 3-dimensional double cone,” Mat. Sb. 189(7), 37–52 (1998) [Russian Acad. Sci. Sb.Math. 189, 991–1007 (1998)].MathSciNetGoogle Scholar
  13. 13.
    I. Cheltsov, “Nonrational nodal quartic threefolds,” Pacific J. Math. 226(1), 65–81 (2006).zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    K. A. Shramov, “ℚ-factorial quartic threefolds,” Mat. Sb. 198(8), 103–114 (2007) [Russian Acad. Sci. Sb. Math. 198 (7–8), 1165–1174 (2007)].MathSciNetGoogle Scholar
  15. 15.
    I. A. Cheltsov, “Birationally rigid Fano varieties,” UspekhiMat. Nauk 60(5), 71–160 (2005) [RussianMath. Surveys 60 (5), 875–965 (2005)].MathSciNetGoogle Scholar
  16. 16.
    I. Cheltsov, Points in Projective Spaces and Applications, arXiv: math/0511578v8.Google Scholar
  17. 17.
    S. Cynk, “Defect of a nodal hypersurface,” Manuscripta Math. 104(3), 325–331 (2001).zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    D. Eisenbud and J.-H. Koh, “Remarks on points in a projective space,” in Math. Sci. Res. Inst. Publ. Berkeley, CA, 1987, Vol. 15: Commutative Algebra (Springer, New York, 1989), pp. 157–172.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations