Mathematical Notes

, Volume 82, Issue 5–6, pp 748–755 | Cite as

A remark on Compressed Sensing



Recently, a new direction in signal processing — “Compressed Sensing” is being actively developed. A number of authors have pointed out a connection between the Compressed Sensing problem and the problem of estimating the Kolmogorov widths, studied in the seventies and eighties of the last century. In this paper we make the above mentioned connection more precise.

Key words

compressed sensing signal processing Kolmogorov width Gelfand width sparsity restricted isometry property combinatorial optimization problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM Rev. 43(1), 129–159 (2001).MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    D. L. Donoho, M. Elad, and V. N. Temlyakov, “Stable recovery of sparse overcomplete representations in the presence of noise,” IEEE Trans. Inform. Theory 52(1), 6–18 (2006).CrossRefMathSciNetGoogle Scholar
  3. 3.
    E. J. Candes, “Compressive sampling,” in International Congress of Mathematicians, Madrid, Spain, August 22–30, 2006 (Eur. Math. Soc., Zürich, 2006), Vol. 3, pp. 1433–1452.Google Scholar
  4. 4.
    R. DeVore, “Optimal computation,” in International Congress of Mathematicians, Madrid, Spain, August 22–30, 2006 (Eur. Math. Soc., Zürich, 2006), Vol. 1, pp. 187–215.Google Scholar
  5. 5.
    D. L. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory 52(4), 1289–1306 (2006).CrossRefMathSciNetGoogle Scholar
  6. 6.
    A. Cohen, W. Dahmen, and R. DeVore, Compressed Sensing and k-Term Approximation (Manuscript, 2007).Google Scholar
  7. 7.
    R. S. Ismagilov, “Diameters of sets in normed linear spaces, and the approximation of functions by trigonometric polynomials,” Uspekhi Mat. Nauk 3(177), 161–178 (1974) [Russian Math. Surveys 29 (3), 169–186 (1974)].MathSciNetGoogle Scholar
  8. 8.
    B. S. Kashin, “Diameters of some finite-dimensional sets and classes of smooth functions,” Izv. Akad. Nauk SSSR Ser. Mat. 41, 334–351 (1977) [Math. USSR-Izv. 11, 317–333 (1978)].MATHMathSciNetGoogle Scholar
  9. 9.
    A. Yu. Garnaev and E. D. Gluskin, “On widths of the Euclidean ball,” Dokl. Akad. Nauk SSSR 277, 1048–1053 (1984) [Soviet Math., Dokl. 30 (5), 200–204 (1984)].MathSciNetGoogle Scholar
  10. 10.
    E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE Trans. Inform. Theory 51(12), 4203–4215 (2005).CrossRefMathSciNetGoogle Scholar
  11. 11.
    E. J. Candes, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Comm. Pure Appl. Math. 59(8), 1207–1223 (2006).MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteMoscowRussia
  2. 2.University of South CarolinaColumbiaUSA

Personalised recommendations