Advertisement

Mathematical Notes

, Volume 81, Issue 5–6, pp 757–766 | Cite as

Reducibility of monadic equivalence relations

  • V. G. Kanovei
  • V. A. Lyubetskii
  • M. Reeken
Article
  • 51 Downloads

Abstract

Each additive cut in the nonstandard natural numbers *ℕ induces the equivalence relation MU on *ℕ defined as xMU y if |xy| ε U. Such equivalence relations are said to be monadic. Reducibility between monadic equivalence relations is studied. The main result (Theorem 3.1) is that reducibility can be defined in terms of cofinality (or coinitiality) and a special parameter of a cut, called its width. Smoothness and the existence of transversals are also considered. The results obtained are similar to theorems of modern descriptive set theory on the reducibility of Borel equivalence relations.

Key words

nonstandard analysis additive cut of the hyperintegers monadic equivalence relation κ-determined set κ-determined reducibility width of a cut 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. J. Keisler, K. Kunen, A. Miller, and S. Leth, “Descriptive set theory over hyperfinite sets,” J. Symbolic Logic 54(4), 1167–1180 (1989).zbMATHCrossRefGoogle Scholar
  2. 2.
    H. J. Keisler and S. C. Leth, “Meager sets on the hyperfinite time line,” J. Symbolic Logic 56(1), 71–102 (1991).zbMATHCrossRefGoogle Scholar
  3. 3.
    R. Jin, “Existence of some sparse sets of nonstandard natural numbers,” J. Symbolic Logic 66(2), 959–973 (2001).zbMATHCrossRefGoogle Scholar
  4. 4.
    V. Kanovei and M. Reeken, “Borel and countably determined reducibility in nonstandard domain,” Monatsh. Math. 140(3), 197–231 (2003).zbMATHCrossRefGoogle Scholar
  5. 5.
    V. Kanovei and M. Reeken, Nonstandard Analysis, Axiomatically (Springer, Berlin, 2004).zbMATHGoogle Scholar
  6. 6.
    G. Hjorth, Classification and Orbit Equivalence Relations (AMS, Providence, RI, 2000).zbMATHGoogle Scholar
  7. 7.
    A. S. Kechris, “New directions in descriptive set theory,” Bull. Symbolic Logic 5(2), 161–174 (1999).zbMATHCrossRefGoogle Scholar
  8. 8.
    E. I. Gordon, A. G. Kusraev, and S. S. Kutateladze, Infinitesimal Analysis (Izd. Inst. Mat. Ross. Akad. Nauk, Novosibirsk, 2001) [in Russian].Google Scholar
  9. 9.
    V. A. Uspenskii, What is Nonstandard Analysis? (Nauka, Moscow, 1987) [in Russian].Google Scholar
  10. 10.
    T. Lindstrøm, “An invitation to nonstandard analysis,” in Nonstandard Analysis and Its Applications (Cambridge Univ. Press, Cambridge, 1988), pp. 1–105.Google Scholar
  11. 11.
    A. Robinson, Nonstandard Analysis (North-Holland, Amsterdam, 1966).Google Scholar
  12. 12.
    C. C. Chang and H. J. Keisler, Model Theory (North-Holland, Amsterdam, 1973; Mir, Moscow, 1977).zbMATHGoogle Scholar
  13. 13.
    V. G. Kanovei, “Kolmogorov’s ideas in the theory of operations on sets,” Usp. Mat. Nauk 43(6), 93–128 (1988) [Russ. Math. Surv. 43 (6), 111–155 (1988)].Google Scholar
  14. 14.
    K. Čuda and P. Vopenka, “Real and imaginary classes in the alternative set theory,” Comment. Math. Univ. Carolin. 20(4), 639–653 (1979).Google Scholar
  15. 15.
    C. W. Henson, “Unbounded Loeb measures,” Proc. Amer. Math. Soc. 64(1), 143–150 (1979).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • V. G. Kanovei
    • 1
  • V. A. Lyubetskii
    • 1
  • M. Reeken
    • 2
  1. 1.Institute of Problems of Data TransmissionRussian Academy of SciencesMoscowRussia
  2. 2.Wuppertal UniversityGermany

Personalised recommendations