Mathematical Notes

, Volume 81, Issue 3–4, pp 467–476 | Cite as

On some questions related to the Krichever correspondence

  • A. B. Zheglov
  • D. V. Osipov
Article

Abstract

We investigate various new properties and examples of the two-dimensional and one-dimensional Krichever correspondence.

Key words

algebraic curve torsion-free sheaf cohomology group Krichever correspondence ample Cartier divisor Fredholm subspace 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Mulase, “Solvability of the super KP equation and a generalization of the Birkhoff decomposition,” Invent. Math. 92(1), 1–46 (1988).MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    A. N. Parshin, “On a ring of formal pseudo-differential operators,” Trudy Mat. Inst. Steklov 224(1), 291–305 (1999) [Proc. Steklov Inst. Math, 224 (1), 266–280 (1999)]; arXiv:math.AG/9911098.MathSciNetGoogle Scholar
  3. 3.
    A. B. Zheglov, “On the structure of two-dimensional local skew fields,” Izv. Ross. Akad. Nauk Ser. Mat. 65(1), 25–60 (2001) [Russian Acad. Sci. Izv. Math. 65 (1), 23–55 (2001)].MathSciNetGoogle Scholar
  4. 4.
    M. Mulase, “Category of vector bundles on algebraic curves and infinite dimensional Grassmannians,” Int. J. Math. 1(3), 293–342 (1990).MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    G. Segal and G. Wilson, “Loop groups and equations of the KdV type,” Publ. Math. IHES 80, 301–342 (1985); Appendix to Loop Groups by E. Pressley and G. Segal (Mir, Moscow, 1990), pp. 379–442.Google Scholar
  6. 6.
    D. V. Osipov, “The infinite-dimensional Sato Grassmannian and coherent sheaves of rank 2 on curves,” Mat. Sb. 194(11), 81–94 (2003) [Russian Acad. Sci. Sb. Math. 194 (11–12), 1665–1678 (2003)]; arXiv:math.AG/9904152.MathSciNetGoogle Scholar
  7. 7.
    A. N. Parshin, “Krichever correspondence for algebraic surfaces,” Funktsional. Anal. i Prilozhen. 35(1), 74–76 (2001) [Functional Anal. Appl. 35 (1), 88–90 (2001)]; arXiv:math.AG/9911097.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    A. N. Parshin, “Integrable systems and local fields,” Comm. Algebra 29(9), 4157–4181 (2001).MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    A. N. Parshin, “The arithmetic of two-dimensional schemes. I. Repartitions and residues,” Izv. Akad. Nauk SSSR Ser. Mat. 40(4), 736–773 (1976) [Math. USSR-Izv. 10 (4), 695–729 (1976)].MATHMathSciNetGoogle Scholar
  10. 10.
    T. Fimmel and A. N. Parshin, An Introduction to the Higher Adelic Theory, Preprint.Google Scholar
  11. 11.
    A. Huber, “On the Parshin-Beilinson adeles for schemes,” Abh. Math. Sem. Univ. Hamburg 61, 249–273 (1991).MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    D. V. Osipov, “n-dimensional local fields and adeles on n-dimensional schemes,” in Lecture Notes Series of London Math. Soc. (in press); arXiv:math.AG/0508205.Google Scholar
  13. 13.
    D. V. Osipov, “Krichever correspondence for algebraic varieties,” Izv. Ross. Akad. Nauk Ser. Mat. 65(2), 91–128 (2001) [Russian Acad. Sci. Izv. Math. 65 (2), 941–975 (2001)]; arXiv:math.AG/0003188.MathSciNetGoogle Scholar
  14. 14.
    M. Sato and M. Noumi, “Soliton equations and universal Grassmann manifold,” Sophia Kokyuroku in Mathematics (Sophia University, Tokyo, 1984), Vol. 18, pp. 74–75.Google Scholar
  15. 15.
    M. Sato and Y. Sato, “Soliton equations as dynamical systems on infinite dimensional Grassmann manifold,” in Nonlinear Partial Differential Equations in Applied Science, Proc. U. S.-Jap. Semin. (Tokyo, 1982; North-Holland Math. Stud., Amsterdam, 1983), Vol. 81, pp. 259–271.Google Scholar
  16. 16.
    A. B. Zheglov, Two dimensional KP systems and their solvability; arXiv:math-ph/0503067.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • A. B. Zheglov
    • 1
  • D. V. Osipov
    • 2
  1. 1.Moscow State UniversityRussia
  2. 2.Steklov Mathematics InstitueRASRussia

Personalised recommendations