Advertisement

Mathematical Notes

, Volume 81, Issue 3–4, pp 297–301 | Cite as

Quadratic transformations and Guillera’s formulas for 1/π2

  • V. V. Zudilin
Article

Abstract

We prove two new series of Ramanujan type for 1/π2.

Key words

Ramanujan-type formula Pochhammer symbol hypergeometric series Apéry numbers Orr-type theorem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Guillera, “Some binomial series obtained by the WZ-method,” Adv. in Appl. Math. 29(4), 599–603 (2002).zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    J. Guillera, “About a new kind of Ramanujan-type series,” Experiment. Math. 12(4), 507–510 (2003).zbMATHMathSciNetGoogle Scholar
  3. 3.
    J. Guillera, “Generators of some Ramanujan formulas,” Ramanujan J. 11(1), 41–48 (2006).zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    J. Guillera, My Formulas for 1/π 2, Manuscript at http://personal.auna.com/jguillera/pi-formulas.pdf (2005).
  5. 5.
    L. J. Slater, Generalized Hypergeometric Functions (Cambridge Univ. Press, Cambridge, 1966).zbMATHGoogle Scholar
  6. 6.
    Y. Yang, “On differential equations satisfied by modular forms,” Math. Z. 246(1–2), 1–19 (2004).zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    H. H. Chan, S. H. Chan, and Z. Liu, “Domb’s numbers and Ramanujan-Sato type series for 1/π,” Adv. Math. 186(2), 396–410 (2004).zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Y. Yang (private communication, August 2005).Google Scholar
  9. 9.
    G. Almkvist and W. Zudilin [V. V. Zudilin], “Differential equations, mirror maps and zeta values,” in Mirror Symmetry V, AMS/IP Stud. Adv. Math., Ed. by N. Yui, S.-T. Yau, and J. D. Lewis (Amer. Math. Soc. & International Press, Providence, RI, 2007), Vol. 38, pp. 481–515; arXiv: math.NT/0402386.Google Scholar
  10. 10.
    W. Zudilin [V. V. Zudilin], “Well-poised hypergeometric transformations of Euler-type multiple integrals,” J. London Math. Soc. (2) 70(1), 215–230 (2004).zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    M. Petkovšek, H. S. Wilf, and D. Zeilberger, A = B (A. K. Peters, Ltd., Wellesley, MA, 1996).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • V. V. Zudilin
    • 1
  1. 1.Moscow State University Steklov Mathematics InstituteRussian Academy of SciencesRussia

Personalised recommendations