Skip to main content
Log in

The Problem of Meridional Heat Transport in the Astronomical Climate Theory

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The reduction of solar radiation arriving in the summer half of the years by 65° N has been found to be a consequence of decreased inclination of the rotation axis and increased meridional contrast in insolation, rather than a result of climate cooling. Thus, the astronomical climate theory involves a paradox related to the fact that the change in the meridional heat transfer due to a change in the inclination of the rotation axis is disregarded. In this context, the mechanism of the astronomical chronology of climatic events in the Pleistocene needs to be revised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Adhémar, J.A., Révolutions de la mer, déluges périodiques, Paris: Carilian-Goeury et V. Dalmont, 1842.

    Google Scholar 

  2. Aseev, A.A., Drevnie materikovye oledeneniya Evropy (Ancient Continental Freezes of Europe), Moscow: Nauka, 1974.

  3. Berger, A., Support for the astronomical theory of climatic change, Nature, 1977, vol. 268, pp. 44–45.

    Article  Google Scholar 

  4. Berger, A., Long-term variations of daily insolation and quaternary climatic changes, J. Atmos. Sci., 1978, vol. 35, no. 12, pp. 2362–2367.

    Article  Google Scholar 

  5. Berger, A. and Loutre, M.F., Astronomical solutions for paleoclimate studies over the last 3 million years, Earth Planet. Sci. Lett., 1992, vol. 111, pp. 369–382.

    Article  Google Scholar 

  6. Bertrand, C., Loutre, M.F., and Berger, A., High frequency variations of the Earth’s orbital parameters and climate change, Geophys. Res. Lett., 2002, vol. 29, no. 18, pp. 40-1–40-3. https://doi.org/10.1029/2002GL015622

  7. Bol’shakov, V.A. and Kapitsa, A.P., Lessons of the development of the orbital theory of paleoclimate, Herald Russ. Acad. Sci., 2011, vol. 81, no. 4, pp. 387–396.

    Article  Google Scholar 

  8. Brouwer, D. and Van Woerkom, A.J.J., The secular variation of the orbital elements of the principal planets, Astr-on. Pap., 1950, vol. 13, pp. 81–107.

    Google Scholar 

  9. Chetvertichnyi period v SShA (The Quaternary of the U.S.), Wright, H.E. and Frey, D.G., Eds., New Jersey: Princeton University Press, 1965; Moscow: Mir, 1968, vol. 1.

  10. Cionco, R.G. and Soon, W.W.-H., Short-term orbital forcing: A quasi-review and a reappraisal of realistic boundary conditions for climate modeling, Earth Sci. Rev., 2017, vol. 166, pp. 206–222.

    Article  Google Scholar 

  11. Croll, J., Climate and Time in Their Geological Relations: A Theory of Secular Changes of the Earth’s Climate, London: Edward Stanford, 1875.

    Google Scholar 

  12. Fedorov, V.M., Interannual variations in the duration of the tropical year, Dokl. Earth Sci., 2013, vol. 451, no. 1, pp. 750–753. https://doi.org/10.1134/S1028334X13070015

    Article  Google Scholar 

  13. Fedorov, V.M., Spatial and temporal variations in solar climate of the Earth in the present epoch, Izv., Atmos. Ocean. Phys., 2015, vol. 51, no. 8, pp. 779–791.

    Article  Google Scholar 

  14. Fedorov, V.M., Theoretical calculation of the interannual variability of the Earth’s insolation with daily resolution, Sol. Syst. Res., 2016, vol. 50, no. 3, pp. 220–224. https://doi.org/10.1134/S0038094616030011

    Article  Google Scholar 

  15. Fedorov, V.M., Insolyatsiya Zemli i sovremennye izmeneniya klimata (The Earth’s Insolation and Modern Climate Changes), Moscow: Fizmatlit, 2018.

  16. Fedorov, V.M., Earth’s insolation variation and its incorporation into physical and mathematical climate models, Phys.-Usp., 2019, vol. 62, no. 1, pp. 32–45.

    Article  Google Scholar 

  17. Fedorov, V.M. and Frolov, D.M., Spatial and temporal variability of solar radiation arriving at the top of the atmosphere, Cosmic Res., 2019, vol. 57, no. 3, pp. 156–162.

    Article  Google Scholar 

  18. Flammarion, C., Astronomie populaire, Paris, 1880; St. Petersburg: SPb. elektropechatnya, 1902.

  19. Humboldt, A., Kosmos. Entwurf einer physischen Weltbeschreibung, Stuttgart: Cotta, 1845; Moscow: Brat’ya Salaevy, 1866. http://planet.iitp.ru/Oper_pr/tc_data/tc_ data_1.htm. http://www.cru.uea.ac.uk/cru/data/temperature.

  20. Imbrie, J., Astronomical theory of the Pleistocene ice ages brief historical review, Icarus, 1982, vol. 50, pp. 408–422.

    Article  Google Scholar 

  21. Imbrie, J. and Imbrie, K.P., Ice Ages (Solving the Mystery), Moscow: Progress, 1988.

    Google Scholar 

  22. Khromov, S.P. and Petrosyants, M.A., Meteorologiya i klimatologiya (Meteorology and Climatology), Moscow: MGU, 2006.

  23. Kotlyakov, V.M. and Sonechkin, D.M., Modern interpretation of the history of interglacial ages of the Pleistocene, Led Sneg, 2015, no. 2, pp 103–122.

  24. Köppen, W. and Wegener, A., Die Klimate der geologischen Vorzeit, Berlin: Gerb. Bornetraeger, 1924.

    Google Scholar 

  25. Lorenz, E.N., The Nature and Theory of the General Circulation of the Atmosphere, Geneva: WMO, 1967; Leningrad: Gidrometeoizdat, 1970.

  26. Markov, K.K., Paleogeografiya (Paleogeography), Moscow: MGU, 1960.

    Google Scholar 

  27. Markov, K.K., Lazukov, G.I., and Nikolaev, V.A., Chetvertichnyi period (The Quaternary Period), Moscow: MGU, 1965, vol. 1.

  28. Mel’nikov, V.P. and Smul’skii, I.I., Astronomicheskaya teoriya lednikovykh periodov: Novye priblizheniya. Reshennye i nereshennye problemy (Astronomical Theory of Glacial Ages: New Approximations. Solved and Unsolved Problmems), Novosibirsk.: GEO, 2009.

  29. Milankovitch, M., Mathematische Klimalehre und astronomische Theorie der Klimaschwankungen, Berlin: Borntraeger, 1930; Moscow–Leningrad: GONTI, 1939.

  30. Monin, A.S., Vvedenie v teoriyu klimata (Introduction to the Climate Theory), Leningrad: Gidrometeoizdat, 1982.

  31. Monin, A.S. and Shishkov, Yu.A., Climate as a problem of physics, Phys.-Usp., 2000, vol. 43, no. 4, pp. 381–406.

    Article  Google Scholar 

  32. Palmen E. and Newton, C.W., Atmospheric Circulation Systems, New York: Academic, 1969; Leningrad: Gidrometeoizdat, 1973.

  33. Pilgrim, L., Versuch einer rechneriche Behandlung der Eiszeit, Jahreshefte des Vereins fur vaterlandische Naturkunde in Wurttemberg, 1904, vol. 60.

  34. Pogosyan, Kh.P., Tsiklony (Cyclones), Leningrad: Gidrometeoizdat, 1976.

    Google Scholar 

  35. Sharaf, Sh.G. and Budnikova, N.A., Secular changes in the Earth’s orbit and the astronomical theory of climate fluctuations, Tr. Inst. Teor. Astron. Akad. Nauk SSSR, 1969, no. 14, pp. 48–84.

  36. Vernekar, A., Long-Period Global Variations of Incoming Solar Radiation, Am. Meteorol. Soc., 1972.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Fedorov.

Ethics declarations

The authors state that there is no conflict of interests.

Additional information

Translated by V. Arutyunyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, V.M. The Problem of Meridional Heat Transport in the Astronomical Climate Theory. Izv. Atmos. Ocean. Phys. 55, 1572–1583 (2019). https://doi.org/10.1134/S0001433819100025

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433819100025

Keywords:

Navigation