Skip to main content
Log in

Role of Tropospheric Latent Heat Advective Fluxes in the Intensification of Tropical Cyclones

  • USE OF SPACE INFORMATION ABOUT THE EARTH STUDYING CATASTROPHIC NATURAL PROCESSES FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

An animated analysis of the data of global radiothermal satellite monitoring carried out in August 2000 has been applied to study the processes of evolution of tropical cyclones in the Northern Hemisphere. The crucial role of tropospheric advective latent heat fluxes within the rapid intensification of the tropical cyclone has been identified and confirmed by existing examples. The main disturbing factor that introduces significant errors into the evaluations by this approach is the proximity of large landmasses; hence a deeper analysis requires a preliminary selection of tropical cyclones moving over the ocean-water space away from the shoreline as objects of study. Proposals for further improving the analysis technique aimed at a detailed investigation of individual phases of a tropical cyclone evolution using large arrays of radiothermal remote data are formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Ali, M., Swain, D., Kashyap, T., McCreary, J., and Nagamani, P., Relationship between cyclone intensities and sea surface temperature in the tropical Indian Ocean, IEEE Geosci. Remote Sens. Lett., 2013, vol. 10, no. 4, pp. 841–844.

    Article  Google Scholar 

  2. Ermakov, D.M., Raev, M.D., Suslov, A.I., and Sharkov, E.A., Electronic long-term database of global radiothermal field of the Earth in the context of multiscale investigation of the ocean-atmosphere system, Issled. Zemli Kosmosa, 2007, no. 1, pp. 7–13.

  3. Ermakov, D.M., Chernushich, A.P., Sharkov, E.A., and Shramkov, Ya.N., Possibility of the construction of short-term global radiothermal images of the ocean–atmosphere system on the basis of the Stream Handler programming platform, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2011, vol. 8, no. 3, pp. 9–16.

    Google Scholar 

  4. Ermakov, D.M., Chernushich, A.P., Sharkov, E.A., and Pokrovskaya, I.V., Searching for an energy source of the intensification of tropical cyclone Katrina using microwave satellite sensing data, Issled. Zemli Kosmosa, 2012a, no. 4, pp. 47–56.

  5. Ermakov, D.M., Chernushich, A.P., and Sharkov, E.A., Detailing the developmental phases of TC Katrina on interpolated global fields of water vapor, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2012b, vol. 9, no. 2, pp. 207–213.

    Google Scholar 

  6. Ermakov, D.M., Raev, M.D., Chernushich, A.P., and Sharkov, E.A., Algorithm of the construction of global radiothermal fields of the ocean–atmosphere system using microwave satellite data of high spatial and temporal resolution, Issled. Zemli Kosmosa, 2013a, no. 4, pp. 72–82.

  7. Ermakov, D.M., Sharkov, E.A., and Chernushich, A.P., Animation analysis of precedents of rapid intensification of tropical cyclones Tez. dokl. Mezhd. konf. “Distantsionnoe zondirovanie okruzhayushchei sredy: nauchnye i prikladnye issledovaniya v Aziatsko–Tikhookeanskom regione (RSAP2013)” (Abstracts of the International Conference “Remote Sensing of the Environment: Scientific and Applied Studies in the Asia–Pacific Region (RSAP2013)”), Vladivostok, 2013b, pp. 63–64.

  8. Ermakov, D.M., Sharkov, E.A., Pokrovskaya, I.V., and Chernushich, A.P., Revealing energy sources in intermittent intensity modes of the Alberto TC during its evolution according to satellite microwave sensing data, Issled. Zemli Kosmosa, 2013c, no. 4, pp. 39–49.

  9. Ermakov, D.M., Sharkov, E.A., and Chernushich, A.P., Evaluation of tropospheric advective fluxes of latent heat over the ocean by animation analysis of radiothermal data of satellite monitoring, Issled. Zemli Kosmosa, 2014, no. 4, pp. 32–38.

  10. Kaplan, J., DeMaria, M., and Knaff, J.A., A revised tropical cyclone rapid intensification index for the Atlantic and Eastern North Pacific basins, Weather Forecast, 2010, vol. 25, pp. 220–241.

    Article  Google Scholar 

  11. Nerushev, A.F. and Kramchaninova, E.K., Method for determining atmospheric motion characteristics using measurements on geostationary meteorological satellites, Izv., Atmos. Ocean. Phys., 2011, vol. 47, no. 9, pp. 1104–1113.

    Article  Google Scholar 

  12. Palmén, E. and Newton, C., Atmospheric Circulation Systems, New York: Academic, 1969; Leningrad: Gidrometeoizdat, 1973.

  13. Permyakov, M.S., Tropical cyclones: Formation, development, and interaction with the ocean, Extended Abstract of Dr. Sci. Dissertation, Vladivostok. 2006.

  14. Pokrovskaya, I.V. and Sharkov, E.A., Tropicheskie tsiklony i tropicheskie vozmushcheniya Mirovogo okeana: khronologiya i evolyutsiya. Vers. 3.1. (1983–2005) (Tropical Cyclones and Tropical Disturbances of the World Ocean: Chronology and Evolution). Version 3.1 (1983–2005), Moscow: Poligraf servis, 2006.

  15. Pokrovskaya, I.V. and Sharkov, E.A., Tropicheskie tsiklony i tropicheskie vozmushcheniya Mirovogo okeana: khronologiya i evolyutsiya. Vers. 3.1. (2006–2010) (Tropical Cyclones and Tropical Disturbances of the World Ocean: Chronology and Evolution). Version 4.1 (2006–2010), Moscow: KDU, 2011.

  16. Rostovtseva, V.V. and Goncharenko, I.V., Temporal and spatial statistics of the temperature–humidity signature of tropical cyclone generation according to satellite microwave radiometry, Issled. Zemli Kosmosa, 2010, no. 4, pp. 32–40.

  17. Sharkov, E.A., Global Tropical Cyclogenesis, Berlin: Springer, 2000.

    Google Scholar 

  18. Sharkov, E.A., Universal constant of the generation of the stochastic mode of global tropical cyclogenesis in the context of climatic variations, Issled. Zemli Kosmosa, 2009, no. 6, pp. 31–38.

  19. Sharkov, E.A., Kim, G.A., and Pokrovskaya, I.V., Energy features of plural tropical cyclogenesis from multispectral satellite observations, Izv., Atmos. Ocean. Phys., 2011a, vol. 47, no. 9, pp. 1084–1091.

    Article  Google Scholar 

  20. Sharkov, E.A., Shramkov, Ya.N., and Pokrovskaya, I.V., Features of water vapor equatorial field during tropical cyclone (TC) evolution by the example of the Francisco TC (2001), Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2011b, vol. 8, no. 3, pp. 310–316.

    Google Scholar 

  21. Sharkov, E.A., Shramkov, Ya.N., and Pokrovskaya, I.V., Boundary parameter of tropical cyclone genesis in the global integral water vapor field, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2011c, vol. 8, no. 1, pp. 280–286.

    Google Scholar 

  22. Sharkov, E.A., Remote investigations of atmospheric catastrophes, Izv., Atmos. Ocean. Phys., 2011d, vol. 47, no. 9, pp. 1057–1071.

    Article  Google Scholar 

  23. Sharkov, E.A., Shramkov, Ya.N., and Pokrovskaya, I.V., Increased water-vapor content in the atmosphere of tropical latitudes as a necessary condition for the genesis of tropical cyclones, Izv., Atmos. Ocean. Phys., 2012, vol. 48, no. 9, pp. 900–908.

    Article  Google Scholar 

  24. Wimmers, A.J. and Velden, C.S., MIMIC: A new approach to visualizing satellite microwave imagery of tropical cyclones, Bull. Am. Meteorol. Soc., 2007, vol. 88, no. 8, pp. 1187–1196.

    Article  Google Scholar 

  25. Wimmers, A.J. and Velden, C.S., Seamless advective blending of total precipitable water retrievals from polar-orbiting satellites, J. Appl. Meteorol. Climatol., 2011, vol. 50, no. 5, pp. 1024–1036.

    Article  Google Scholar 

  26. Zheng, G. and Tang, D., Offshore and nearshore chlorophyll increases induced by typhoon winds and subsequent terrestrial rainwater runoff, Mar. Ecol.: Proc. Ser., 2007, vol. 333, pp. 61–74.

    Article  Google Scholar 

  27. Zhao, H., Tang, D., and Wang, Y., Comparison of phytoplankton blooms triggered by two typhoons with different intensities and translation speeds in the South China Sea, Mar. Ecol.: Proc. Ser., 2008, vol. 365, pp. 57–65.

    Article  Google Scholar 

Download references

Funding

The paper was supported by the Russian Foundation for Basic Research, project no. 13-07-00513A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Sharkov.

Additional information

Translated by N. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermakov, D.M., Sharkov, E.A. & Chernushich, A.P. Role of Tropospheric Latent Heat Advective Fluxes in the Intensification of Tropical Cyclones. Izv. Atmos. Ocean. Phys. 55, 1254–1265 (2019). https://doi.org/10.1134/S0001433819090172

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433819090172

Keywords:

Navigation