Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 55, Issue 5, pp 389–406 | Cite as

Modeling an Urban Heat Island during Extreme Frost in Moscow in January 2017

  • V. P. Yushkov
  • M. M. Kurbatova
  • M. I. Varentsov
  • E. A. Lezina
  • G. A. Kurbatov
  • E. A. Miller
  • I. A. RepinaEmail author
  • A. Yu. Artamonov
  • M. A. Kallistratova
Article
  • 5.5k Downloads

Abstract—

Using the example of an analysis of an extreme lowering of temperature in Moscow in January 2017, the horizontal and vertical extent of the urban heat island against the background of a strong stable stratification of the atmospheric boundary layer is studied. The possibilities of measuring and monitoring the vertical structure of the atmosphere using ground-based remote sensing are investigated. The capabilities of the mesoscale model WRF, adapted for a detailed description of mixing processes in the atmospheric boundary layer, in reproducing the spatial dynamics of the temperature anomaly are demonstrated. The numerical estimates of the amplitude and vertical extent of the urban heat island are compared with the measurement accuracy and the total errors of the numerical predictions. A comparison of measurement data and numerical simulation results on the WRF model, using the example of a winter urban heat island in January 2017, showed that mesoscale synoptic models so far only capture the main features of the urban heat island. However, deviations between model and observed temperature fields can reach 5°C.

Keywords:

urban heat island mesoscale modeling atmospheric stratification inversions 

Notes

ACKNOWLEDGMENTS

We are grateful to D.D. Kuznetsov and V.S. Lyulyukin for providing the observational data.

FUNDING

This work was supported by the Russian Foundation for Basic Research, projects nos. 18-08-00074, 19-05-00028 and 18-05-60126.

The work of M. Varentsov on the analysis of the spatial structure of the heat island according to surface observations was supported by the Russian Science Foundation, project no. 17-77-20070.

REFERENCES

  1. 1.
    J. Y. Han, J. J. Baik, and H. Lee, “Urban impacts on precipitation,” Asia-Pacific J. Atmos. Sci 50 (1), 17–30 (2014).Google Scholar
  2. 2.
    J. Hidalgo, G. Pigeon, and V. Masson, “Urban-breeze circulation during the CAPITOUL experiment: Observational data analysis approach,” Meteorol. Atmos. Phys. 102 (3–4), 223–241 (2008).CrossRefGoogle Scholar
  3. 3.
    A. Lemonsu and V. Masson, “Simulation of a summer urban breeze over Paris,” Boundary-Layer Meteorol. 104 (3), 463–490 (2002).CrossRefGoogle Scholar
  4. 4.
    J. M. Shepherd, “A review of current investigations of urban-induced rainfall and recommendations for the future,” Earth Interact. 9 (12), 1–27 (2005).CrossRefGoogle Scholar
  5. 5.
    M. A. Lokoshchenko and I. A. Korneva, “Underground urban heat island below Moscow city,” Urban Clim. 13, 1–13 (2015).CrossRefGoogle Scholar
  6. 6.
    S. A. Benz, P. Bayer, F. M. Goettsche, F. S. Olesen, and P. Blum, “Linking surface urban heat islands with groundwater temperatures,” Environ. Sci. Technol. 50 (1), 70–78 (2016).CrossRefGoogle Scholar
  7. 7.
    A. J. Elmore, S. M. Guinn, B. J. Minsley, and A. D. Richardson, “Landscape controls on the timing of spring, autumn, and growing season length in mid-Atlantic forests,” Global Change Biol. 18 (2), 656–674 (2012).CrossRefGoogle Scholar
  8. 8.
    I. Esau, V. V. Miles, R. Davy, M. W. Miles, and A. Kurchatova, “Trends in normalized difference vegetation index (NDVI) associated with urban development in northern West Siberia,” Atmos. Chem. Phys. 16 (15), 9563–9577 (2016).CrossRefGoogle Scholar
  9. 9.
    D. Zhou, S. Zhao, L. Zhang, G. Sun, and Y. Liu, “The footprint of urban heat island effect in China,” Sci. Rep. 5, 2–12 (2015).Google Scholar
  10. 10.
    M. B. Dillon, M. S. Lamanna, G. W. Schade, A. H. Goldstein, and R. C. Cohen, “Chemical evolution of the Sacramento urban plume: Transport and oxidation,” J. Geophys. Res. 107 (D5), 206 (2002).CrossRefGoogle Scholar
  11. 11.
    T. L. Mote, M. C. Lacke, and J. M. Shepherd, “Radar signatures of the urban effect on precipitation distribution: A case study for Atlanta, Georgia,” Geophys. Res. Lett. 34 (20), 2–5 (2007).Google Scholar
  12. 12.
    T. R. Oke, G. Mills, A. Christen, and J. A. Voogt, Urban Climates (Cambridge University Press, Cambridge, 2017).CrossRefGoogle Scholar
  13. 13.
    A. J. Arnfield, “Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island,” Int. J. Climatol. 23 (1), 1–26 (2003).CrossRefGoogle Scholar
  14. 14.
    C. S. B. Grimmond, “Progress in measuring and observing the urban atmosphere,” Theor. Appl. Climatol. 84 (1–3), 3–22 (2006).CrossRefGoogle Scholar
  15. 15.
    A. Tzavali, J. P. Paravantis, G. Mihalakakou, A. Fotiadi, and E. Stigka, “Urban heat island intensity: A literature review,” Fresenius Environ. Bull. 24, 4535–4554 (2015).Google Scholar
  16. 16.
    T. R. Oke, “The energetic basis of the urban heat island,” Q. J. R. Meteorol. Soc. 108 (455), 1–24 (1982).Google Scholar
  17. 17.
    T. R. Oke, A. Spronken-Smith, E. Jauregui, and C. S. B. Grimmond, “The energy balance of central Mexico City during the dry season,” Atmos. Environ. 33, 3919–3930 (1999).CrossRefGoogle Scholar
  18. 18.
    T. W. Hawkins, A. J. Brazel, W. L. Stefanov, W. Bigler, and E. M. Saffell, “The role of rural variability in urban heat island determination for Phoenix, Arizona,” J. Appl. Meteorol. 43, 476– 486 (2004).CrossRefGoogle Scholar
  19. 19.
    J. D. Fast, J. C. Torcolini, and R. Redman, “Vertical temperature profiles and the urban heat island measured by a temperature datalogger network in Phoenix, Arizona,” J. Appl. Meteorol. 44, 3–13 (2005).CrossRefGoogle Scholar
  20. 20.
    C. J. G. Morris, I. Simmonds, and N. Plummer, “Quantification of the influences of wind and cloud on the nocturnal urban heat island of a large city,” J. Appl. Meteorol. 40, 169–182 (2001).CrossRefGoogle Scholar
  21. 21.
    I. Livada, M. Santamouris, K. Niachou, N. Papanikolaou, and G. Mihalakakou, “Determination of places in the great Athens area where the heat island effect is observed,” Theor. Appl. Climatol. 71, 219–230 (2002).CrossRefGoogle Scholar
  22. 22.
    K. Klysik and K. Fortuniak, “Temporal and spatial characteristics of the urban heat island of Lodz, Poland,” Atmos. Environ. 33, 3885–3895 (1999).CrossRefGoogle Scholar
  23. 23.
    K. M. Hinkel, F. E. Nelson, A. E. Klene, and J. H. Bell, “The urban heat island in winter at Barrow, Alaska,” Int. J. Climatol. 23 (15), 1889–1905 (2003).CrossRefGoogle Scholar
  24. 24.
    N. F. Elansky, O. V. Lavrova, I. I. Mokhov, and A. A. Rakin, “Heat island structure over Russian towns based on mobile laboratory observations,” Dokl. Earth Sci. 443 (1), 420–425 (2012).CrossRefGoogle Scholar
  25. 25.
    A. M. Rizwan, L. Y. Dennis, and L. I. U. Chunho, “A review on the generation, determination and mitigation of urban heat island,” J. Environ. Sci. 20 (1), 120–128 (2008).CrossRefGoogle Scholar
  26. 26.
    G. I. Gorchakov, E. N. Kadygrov, V. E. Kunitsyn, V. I. Zakharov, E. G. Semutnikova, A. V. Karpov, G. A. Kurbatov, E. A. Miller, and S. I. Sitanskii, “The Moscow heat island in the blocking anticyclone during summer 2010,” Dokl. Earth Sci. 456 (2), 736–740 (2014).CrossRefGoogle Scholar
  27. 27.
    B. A. Revich, “Heat waves, atmospheric air quality and the mortality of the population of the European part of Russia in summer 2010: Preliminary assessment results,” Ekol. Chel., No. 7, 3–9 (2011).Google Scholar
  28. 28.
    V. V. Vinogradova, “Heat waves in the European Russia at the beginning of the 21st century,” Izv. Ross. Akad. Nauk: Ser. Geogr., No. 1, 47–55 (2014).Google Scholar
  29. 29.
    M. I. Varentsov, P. I. Konstantinov, T. E. Samsonov, and I. A. Repina, “Investigation of the urban heat island phenomenon during the polar night with experimental measurements and remote sensing for Norilsk city,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 11 (4), 329–337 (2014).Google Scholar
  30. 30.
    K. M. Hinkel and F. E. Nelson, “Anthropogenic heat island at Barrow, Alaska, during winter: 2001–2005,” J. Geophys. Res.: Atmos. 112 (6), 2001–2005 (2007).CrossRefGoogle Scholar
  31. 31.
    N. Magee, J. Curtis, and G. Wendler, “The urban heat island effect at Fairbanks, Alaska,” Theor. Appl. Climatol. 64 (1–2), 39–47 (1999).CrossRefGoogle Scholar
  32. 32.
    P. I. Konstantinov, M. Yu. Grishchenko, and M. I. Varentsov, “Mapping urban heat islands of arctic cities using combined data on field measurements and satellite images based on the example of the city of Apatity (Murmansk Oblast),” Izv., Atmos. Ocean. Phys. 51 (9), 992–998 (2015).CrossRefGoogle Scholar
  33. 33.
    P. Konstantinov, M. Varentsov, and I. Esau, “A high density urban temperature network deployed in several cities of Eurasian Arctic,” Environ. Res. Lett. 13 (7) (2018).CrossRefGoogle Scholar
  34. 34.
    M. Varentsov, P. Konstantinov, A. Baklanov, I. Esau, V. Miles V., and R. Davy, “Anthropogenic and natural drivers of a strong winter urban heat island in a typical Arctic city,” Atmos. Chem. Phys. 18, 17573–17587 (2018).CrossRefGoogle Scholar
  35. 35.
    T. Nygård, T. Valkonen, and T. Vihma, “Characteristics of Arctic low-tropospheric humidity inversions based on radio soundings,” Atmos. Chem. Phys. 14 (4), 1959–1971 (2014).CrossRefGoogle Scholar
  36. 36.
    C. Wetzel and B. Brümmer, “An Arctic inversion climatology based on the European Centre Reanalysis ERA-40,” Meteorol. Z. 20 (6), 589–600 (2011).CrossRefGoogle Scholar
  37. 37.
    E. Atlaskin and T. Vihma, “Evaluation of NWP Results for wintertime nocturnal boundary-layer temperatures over Europe and Finland,” Q. J. R. Meteorol. Soc. 138 (667), 1440–1451 (2012).CrossRefGoogle Scholar
  38. 38.
    W. Anderson, Q. Li, and E. Bou-Zeid, “Numerical simulation of flow over urban-like topographies and evaluation of turbulence temporal attributes,” J. Turbul. 16 (9), 809–831 (2015).CrossRefGoogle Scholar
  39. 39.
    J. Sadique, X. I. A. Yang, C. Meneveau, and R. Mittal, “Aerodynamic properties of rough surfaces with high aspect-ratio roughness elements: Effect of aspect ratio and arrangements,” Boundary Layer Meteorol. 163 (2), 203–224 (2017).CrossRefGoogle Scholar
  40. 40.
    X. X. Li, R. Britter, and L. K. Norford, “Effect of stable stratification on dispersion within urban street canyons: A large-eddy simulation,” Atmos. Environ. 144, 47–59 (2016).CrossRefGoogle Scholar
  41. 41.
    A. V. Glazunov, “Numerical simulation of stably stratified turbulent flows over an urban surface: Spectra and scales and parameterization of temperature and wind-velocity profiles,” Izv., Atmos. Ocean. Phys. 50 (4), 356–368 (2014).CrossRefGoogle Scholar
  42. 42.
    A. V. Glazunov, “Numerical simulation of stably stratified turbulent flows over flat and urban surfaces,” Izv., Atmos. Ocean. Phys. 50 (3), 236–246 (2014).CrossRefGoogle Scholar
  43. 43.
    M. Varentsov, H. Wouters, V. Platonov, and P. Konstantinov, “Megacity-induced mesoclimatic effects in the lower atmosphere: A modeling study for multiple summers over Moscow, Russia,” Atmosphere (Basel) 9 (2), 50 (2018).CrossRefGoogle Scholar
  44. 44.
    K. Trusilova, S. Schubert, H. Wouters, B. Früh, S. Grossman-Clarke, M. Demuzere, and P. Becker, “The urban land use in the COSMO-CLM model: a comparison of three parameterizations for Berlin,” Meteorol. Z. 25 (2), 231–244 (2016).CrossRefGoogle Scholar
  45. 45.
    F. Salamanca, A. Martilli, M. Tewari, and F. Chen, “A study of the urban boundary layer using different urban parameterizations and high-resolution urban canopy parameters with WRF,” J. Appl. Meteorol. Climatol. 50 (5), 1107–1128 (2011).CrossRefGoogle Scholar
  46. 46.
    A. Baklanov, P. G. Mestayer, A. Clappier, S. Zilitinkevich, S. Joffre, A. Mahura, and N. W. Nielsen, “Towards improving the simulation of meteorological fields in urban areas through updated/advanced surface fluxes description,” Atmos. Chem. Phys. 8 (3), 523–543 (2008).CrossRefGoogle Scholar
  47. 47.
    Meteorological temperature profiler MTP-5. http://attex.net/RU/mtp5.php.Google Scholar
  48. 48.
    V. P. Yushkov, “Remote sounding and mesoscale synoptic models in studying the urban boundary layer,” Atmos. Oceanic Opt. 30 (5), 462–474 (2017).CrossRefGoogle Scholar
  49. 49.
    E. N. Kadygrov, I. N. Kuznetsova, and G. S. Golitsyn, “Heat island in the boundary atmospheric layer over a large city: New results based on remote sensing data,” Dokl. Earth Sci. 385 (6), 688–694 (2002).Google Scholar
  50. 50.
    I. N. Kuznetsova, E. N. Kadygrov, E. A. Miller, and M. I. Nakhaev, “Characteristics of the lowest 600 m atmospheric layer temperature on the basis of MTP-5 profiler data,” Opt. Atmos. Okeana. 25 (10), 877–883 (2012).Google Scholar
  51. 51.
    I. N. Ezau, T. Wolf, E. A. Miller, I. A. Repina, Yu. I. Troitskaya, and S. S. Zilitinkevich, “The analysis of results of remote sensing monitoring of the temperature profile in lower atmosphere in Bergen (Norway),” Russ. Meteorol. Hydrol. 38 (10), 715–722 (2013).CrossRefGoogle Scholar
  52. 52.
    A. V. Troitskii, “Remote determination of atmospheric temperature from spectral radiometric measurements in the λ = 5-mm line,” Radiophys. Quantum Electron. 29 (8), 670–678 (1986).CrossRefGoogle Scholar
  53. 53.
    The Weather Research and Forecasting Model. http://www.wrf-model.org.Google Scholar
  54. 54.
    J. Michalakes, J. Dudhia, D. Gill, T. Henderson, J. Klemp, W. Skamarock, and W. Wang, “The Weather Research and Forecast Model: Software architecture and performance,” in Use of High Performance Computing in Meteorology, Proceedings of the Eleventh ECMWF Workshop, Reading, UK, 25–29 October 2004, Ed. by W.  Zwieflhofer and G. Mozdzynski (World Scientific, 2005), pp. 156–168.Google Scholar
  55. 55.
    W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X. Y. Huang, W. Wang, and J. G. Powers, A description of the advanced research WRF Version 3, NCAR Technical Note, Boulder, Colorado: National Center for Atmospheric Research, Mesoscale and Microscale Meteorology Division, 2008.Google Scholar
  56. 56.
    Global Forecast System. http://www.emc.ncep.noaa. gov/GFS/doc.php.Google Scholar
  57. 57.
    G. Thompson, R. M. Rasmussen, and K. Manning, “Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis,” Mon. Weather Rev. 132 (2), 519–542 (2004).CrossRefGoogle Scholar
  58. 58.
    M. J. Iacono, J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, “Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models,” J. Geophys. Res.: Atmos. 113 (D13) (2008).Google Scholar
  59. 59.
    M. Tewari, F. Chen, W. Wang, J. Dudhia, M. A. LeMone, K. Mitchell, M. Ek, G. Gayno, J. Wegiel, and R. H. Cuenca, “Implementation and verification of the unified NOAH land surface model in the WRF model,” in 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction (2004), Vol. 1115, pp. 11–15.Google Scholar
  60. 60.
    G. A. Grell and D. Dévényi, “A generalized approach to parameterizing convection combining ensemble and data assimilation techniques,” Geophys. Res. Lett. 29 (14), 38-1–38-4 (2002).CrossRefGoogle Scholar
  61. 61.
    P. Bougeault and P. Lacarrere, “Parameterization of orography-induced turbulence in a mesobeta-scale model,” Mon. Weather Rev. 117 (8), 1872–1890 (1989).CrossRefGoogle Scholar
  62. 62.
    F. Chen, H. Kusaka, R. Bornstein, J. Ching, C. S. B. Grimmond, S. Grossman-Clarke, T. Loridan, K. W. Manning, A. Martilli, S. Miao, and D. Sailor, “The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems,” Int. J. Climatol. 31 (2), 273–288 (2011).CrossRefGoogle Scholar
  63. 63.
    I. D. Stewart and T. R. Oke, “Local climate zones for urban temperature studies,” Bull. Am. Meteorol. Soc. 93 (12), 1879–1900 (2012).CrossRefGoogle Scholar
  64. 64.
    B. P. Shekhtman, The Moscow Climate: Specific Features of Climate in a Megacity) (Gidrometeoizdat, Moscow, 1969) [in Russian].Google Scholar
  65. 65.
    S. Argentini, G. Mastrantonio, and F. Lena, “Case studies of the wintertime convective boundary-layer structure in the urban area of Milan, Italy,” Boundary Layer Meteorol. 93 (2), 253–267 (1999).CrossRefGoogle Scholar
  66. 66.
    J. J. Baik, Y. H. Kim, and H. Y. Chun, “Dry and moist convection forced by an urban heat island,” J. Appl. Meteorol. 40 (8), 1462–1475 (2001).CrossRefGoogle Scholar
  67. 67.
    M. M. Smirnova, K. G. Rubinshtein, and V. P. Yushkov, “Evaluation of atmospheric boundary layer characteristics simulated by the regional model,” Russ. Meteorol. Hydrol. 36 (12), 777–785 (2011).CrossRefGoogle Scholar
  68. 68.
    V. P. Yushkov, M. A. Kallistratova, R. D. Kouznetsov, G. A. Kurbatov, and V. F. Kramar, “Experience in measuring the wind-velocity profile in an urban environment with a Doppler sodar,” Izv., Atmos. Ocean. Phys. 43 (2), 168–180 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. P. Yushkov
    • 1
  • M. M. Kurbatova
    • 2
  • M. I. Varentsov
    • 1
    • 3
  • E. A. Lezina
    • 4
  • G. A. Kurbatov
    • 1
  • E. A. Miller
    • 5
  • I. A. Repina
    • 1
    • 3
    Email author
  • A. Yu. Artamonov
    • 3
  • M. A. Kallistratova
    • 3
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Nuclear Safety Institute, Russian Academy of SciencesMoscowRussia
  3. 3.Obukhov Institute of Atmospheric Physics, Russian Academy of SciencesMoscowRussia
  4. 4.MosekomonitoringMoscowRussia
  5. 5.Central Aerological ObservatoryDolgoprudnyRussia

Personalised recommendations