Izvestiya, Atmospheric and Oceanic Physics

, Volume 55, Issue 5, pp 432–445 | Cite as

On Algebraic Perturbations in the Atmospheric Boundary Layer

  • O. G. ChkhetianiEmail author
  • N. V. Vazaeva


A simple model for the development of submesoscale perturbations in the atmospheric boundary layer (ABL) is proposed. The growth of perturbations is associated with the shear algebraic instability of the wind velocity profile in the ABL. Seeking optimum values of such perturbations (streaks) allows one to solve the problem of estimating their scales, which turn out to be about 100–200 m vertically and 300–600 m horizontally. Similar scales are also revealed for experimental data on the structure of the wind field in the lower part of the ABL; the data were obtained in 2017 and 2018 in summer at the Tsimlyansk Scientific Station of the Obukhov Institute of Atmospheric Physics during acoustic sounding of the atmosphere with a high-resolution three-component Doppler minisodar.


atmospheric boundary layer algebraic growth optimal perturbations streaks 



We are grateful to M.V. Kalashnik, V.F. Kramar, and M.A. Kallistratova for their interest in the work and useful discussions, as well as to a reviewer for critical and constructive notes which allowed us to improve the exposition of the results of this investigation.


The investigations were supported by the Russian Foundation for Basic Research, project nos. 17-05-01116 and 18-35-00600, as well as by major projects of the Presidium of the Russian Academy of Sciences, KP19-259/P1 and KP19-278/P20.


  1. 1.
    P. Mason and D. Thomson, “Large-eddy simulations of the neutral-static-stability planetary boundary layer,” Q. J. R. Meteorol. Soc. 113, 413–443 (1987).CrossRefGoogle Scholar
  2. 2.
    C.-L. Lin, J. McWilliams, C.-H. Moeng, and P. Sullivan, “Coherent structures and dynamics in a neutrally stratified planetary boundary layer flow,” Phys. Fluids 8, 2626–2639 (1996).CrossRefGoogle Scholar
  3. 3.
    N. L. Byzova, V. N. Ivanov, and M. K. Matskevich, “Measurement of the vorticity components within the lower 300-m atmospheric layer,” Izv., Atmos. Ocean. Phys. 32 (3) 298–302 (1996).Google Scholar
  4. 4.
    B. M. Koprov, V. M. Koprov, and T. I. Makarova, “Convective structures in the atmospheric surface layer,” Izv., Atmos. Ocean. Phys. 36 (1), 37–47 (2000).Google Scholar
  5. 5.
    V. N. Ivanov and N. L. Byzova, “Coherent structures in the atmospheric boundary layer,” Russ. Meteorol. Gidrol., No. 1, 1–16 (2001).Google Scholar
  6. 6.
    P. S. Anderson, “Fine-scale structure observed in a stable atmospheric boundary layer by sodar and kite- borne tethersonde,” Boundary Layer Meteorol. 107, 323–351 (2003).CrossRefGoogle Scholar
  7. 7.
    B. M. Koprov, V. M. Koprov, T. I. Makarova, and G. S. Golitsyn, “Coherent structures in the atmospheric surface layer under stable and unstable conditions,” Boundary Layer Meteorol. 111, 19–32 (2004).CrossRefGoogle Scholar
  8. 8.
    P. Drobinski, P. Carlotti, R. K. Newsom, R. M. Banta, R. C. Foster, and J.-L. Redelsperger, “The structure of the near-neutral atmospheric surface layer,” J. Atmos. Sci. 61, 699–714 (2004).CrossRefGoogle Scholar
  9. 9.
    P. Drobinski, P. Carlotti, J.-L. Redelsperger, R. Banta, V. Masson, and R. Newsom, “Numerical and experimental investigation of the neutral atmospheric surface layer,” J. Atmos. Sci. 64, 137–156 (2007).CrossRefGoogle Scholar
  10. 10.
    E. A. Shishov, B. M. Koprov, and V. M. Koprov, “Statistical parameters of the spatiotemporal variability of the wind direction in the surface layer,” Izv., Atmos. Ocean. Phys. 53 (1), 19–23 (2017).CrossRefGoogle Scholar
  11. 11.
    J. W. Deardorff, “Numerical investigation of neutral and unstable planetary boundary layers,” J. Atmos. Sci. 29 (1), 91–115 (1972).CrossRefGoogle Scholar
  12. 12.
    A. V. Boiko, G. R. Grek, A. V. Dovgal’, and V. V. Kozlov, The Origin of Turbulence in Near-Wall Flows (Nauka, Novosibirsk, 1999) [in Russian].Google Scholar
  13. 13.
    P. J. Schmid and D. S. Henningson, Stability and Transition in Shear Flows (Springer, Berlin, 2001).CrossRefGoogle Scholar
  14. 14.
    L. A. Bordag, O. G. Chkhetiani, M. Fröhner, and V. Myrnyy, “Interaction of a rotational motion and an axial flow in small geometries for a Taylor–Couette problem,” J. Fluids Struct. 20 (5), 621–641 (2005).CrossRefGoogle Scholar
  15. 15.
    I. G. Shukhman, “Transient growth and optimal perturbations with the simplest dynamic model as an example,” Dokl. Phys. 50 (6), 308–310 (2005).CrossRefGoogle Scholar
  16. 16.
    B. F. Farrell, “1982: The initial growth of disturbances in a baroclinic flow,” J. Atmos. Sci. 39, 1663–1686 (1982).CrossRefGoogle Scholar
  17. 17.
    B. F. Farrell, “Optimal excitation of baroclinic waves,” J. Atmos. Sci. 46, 1193–1206 (1989).CrossRefGoogle Scholar
  18. 18.
    V. M. Kalashnik, “Linear dynamics of Eady waves in the presence of horizontal shear,” Izv., Atmos. Ocean. Phys. 45 (6), 714–722 (2009).CrossRefGoogle Scholar
  19. 19.
    R. Buizza and T. N. Palmer, “The singular-vector structure of the atmospheric global circulation,” J. Atmos. Sci. 52 (9), 1434–1456 (1995).CrossRefGoogle Scholar
  20. 20.
    R. C. Foster, “Structure and energetics of optimal Ekman layer perturbations,” J. Fluid Mech. 333, 97–123 (1997).CrossRefGoogle Scholar
  21. 21.
    K. Hibino, H. Ishikawa, and K. Ishioka, “Effect of a capping inversion on the stability of an Ekman boundary layer,” J. Meteorol. Soc. Jpn. Ser. II 90 (2), 311–319 (2012).CrossRefGoogle Scholar
  22. 22.
    B. A. Kader, “Three-layer structure of an unstably stratified atmospheric surface layer,” Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana 24 (12), 1235–1250 (1988).Google Scholar
  23. 23.
    B. A. Kader, A. M. Yaglom, and S. L. Zubkovskii, “Spatial correlation functions of surface-layer atmospheric turbulence in neutral stratification,” in Boundary Layer Studies and Application (Springer, Dordrecht, 1989), pp. 233–249.Google Scholar
  24. 24.
    B. A. Kader and A. M. Yaglom, “Spectra and correlation functions of surface layer atmospheric turbulence in unstable thermal stratification,” in Turbulence and Coherent Structures (Springer, Dordrecht, 1991), pp. 387–412.Google Scholar
  25. 25.
    B. M. Koprov, V. M. Koprov, V. M. Ponomarev, and O. G. Chkhetiani, “Experimental studies of turbulent helicity and its spectrum in the atmospheric boundary layer,” Dokl. Phys. 50 (8), 419–422 (2005).CrossRefGoogle Scholar
  26. 26.
    A. A. Townsend, The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, 1956; Moscow: Inostrannaya literatura, 1959).Google Scholar
  27. 27.
    G. G. Katul, A. Porporato, and V. Nikora, “Existence of k –1 power-law scaling in the equilibrium regions of wall-bounded turbulence explained by Heisenberg’s eddy viscosity,” Phys. Rev. E 86, 066311 (2012).CrossRefGoogle Scholar
  28. 28.
    V. Nikora, “Origin of the “–1” spectral law in wall-bounded turbulence," J. Phys. Rev. Lett. 83 (4), 734–736 (1999).CrossRefGoogle Scholar
  29. 29.
    R. A. Brown, Analytical Methods in Planetary Boundary Layer Modelling (Adam Hilger, London, 1974; Gidrometeoizdat, Leningrad, 1978).Google Scholar
  30. 30.
    D. K. Lilly, “On the stability of Ekman boundary flow,” J. Atmos. Sci. 23 (5), 481–494 (1966).CrossRefGoogle Scholar
  31. 31.
    V. M. Ponomarev, A. A. Khapaev, and O. G. Chkhetiani, “Role of helicity in the formation of secondary structures in the Ekman boundary layer,” Izv., Atmos. Ocean. Phys. 39 (4), 391–400 (2003).Google Scholar
  32. 32.
    B. F. Farrel and P. J. Ioannou, “Optimal excitation of three-dimensional perturbations in viscous constant shear flow,” Phys. Fluids A 5 (6), 1390–1400 (1993).CrossRefGoogle Scholar
  33. 33.
    Lord Kelvin (W. Thomson), “Stability of fluid motion: Rectilinear motion of viscous fluid between two plates,” Philos. Mag. 24 (5), 188–196 (1887).Google Scholar
  34. 34.
    A. K. Blackadar, “The vertical distribution of wind and turbulent exchange in a neutral atmosphere,” J. Geophys. Res. 67 (8), 3095–3102 (1962).CrossRefGoogle Scholar
  35. 35.
    A. Yagi, A. Inagaki, M. Kanda, C. Fujiwara, and Y. Fujiyoshi, “Nature of streaky structures observed with a Doppler lidar,” Boundary Layer Meteorol. 163 (1), 19–40 (2017).CrossRefGoogle Scholar
  36. 36.
    V. F. Kramar, O. G. Chkhetiani, N. V. Vazaeva, M. A. Kallistratova, R. D. Kuznetsov, S. N. Kulichkov, V. S. Lyulyukin, and D. D. Kuznetsov, “Sodar for studying the microstructure of the atmospheric surface layer,” in Turbulence, Dynamics of the Atmosphere and Climate. Proceedings of the International Conference Devoted to the 100th Anniversary of Academician Aleksandra Mikhailovich Obukhov (Fizmatkniga, Moscow 2018) [in Russian].Google Scholar
  37. 37.
    V. M. Ponomarev, O. G. Chkhetiani, and L. V. Shestakova, “Nonlinear dynamics of large-scale vortex structures in a turbulent Ekman layer,” Fluid Dyn. 42 (4), 571–580 (2007).CrossRefGoogle Scholar
  38. 38.
    N. V. Vazaeva, O. G. Chkhetiani, L. O. Maksimenkov, and L. V. Shestakova, “Nonlinear development of structures in the Ekman layer,” Vychisl. Mekh. Sploshnykh Sred 10 (2), 197–211 (2017).Google Scholar
  39. 39.
    P. Drobinski and R. C. Foster, “On the origin of near-surface streaks in the neutrally-stratified planetary boundary layer,” Boundary Layer Meteorol. 108, 247–256 (2003).CrossRefGoogle Scholar
  40. 40.
    N. V. Nikitin and S. M. Chernyshenko, “On the nature of the organized structures in turbulent near-wall flows,” Fluid Dyn. 32 (1), 18–23 (1997).CrossRefGoogle Scholar
  41. 41.
    O. G. Chkhetiani, M. V. Kurgansky, and N. V. Vazaeva, “Turbulent helicity in the atmospheric boundary layer,” Boundary Layer Meteorol. 168, 361–385 (2018).CrossRefGoogle Scholar
  42. 42.
    O. G. Chkhetiani, S. S. Moiseev, A. S. Petrosyan, and R. Z. Sagdeev, “The large scale stability and self-organization in homogeneous turbulent shear flow,” Phys. Scr. 49 (2), 214–220 (1994).CrossRefGoogle Scholar
  43. 43.
    O. G. Chkhetiani, “Vorticity intensification in turbulent flows with helicity,” Izv., Atmos. Ocean. Phys. 41 (2), 145–149 (2005).Google Scholar
  44. 44.
    R. C. Foster, F. Vianey, P. Drobinski, and P. Carlotti, “Near-surface coherent structures and the vertical momentum flux in a large-eddy simulation of the neutrally-stratified boundary layer,” Boundary Layer Meteorol. 120, 229–255 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Obukhov Institute of Atmospheric Physics, Russian Academy of SciencesMoscowRussia
  2. 2.Bauman State Technical UniversityMoscowRussia

Personalised recommendations