Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 55, Issue 4, pp 324–333 | Cite as

Properties of the Frequency Spectra of the Sea Surface and Land Surface Air Temperature Anomalies in a Simple Stochastic Climate Model with Fluctuating Parameters

  • D. A. PetrovEmail author
Article

Abstract

The frequency properties of the spectra of sea surface temperature (SST) and land surface air temperature (SAT) anomalies are analyzed based on a simple energy-balance climate model taking into account the fluctuations of the radiation balance, the latent and sensible heat flux, and the near-surface wind velocity in two particular cases: when the statistical properties of the model parameters correspond to white noise (small-scale and mesoscale subintervals) and the combined case when the properties of the synoptic subinterval of these parameters are taken into account in the SAT block. It is found that, in the first case, the spectra have no features, while, in the second case, the spectra contain selected frequencies in the synoptic and low-frequency intervals. The dependence of their frequencies on the model parameters is analyzed. The properties of the standard deviations of SST and SAT anomalies are investigated.

Keywords:

climate oscillations stochastic climate models multiplicative noise sea-surface and land-surface air-temperature anomalies 

Notes

ACKNOWLEDGMENTS

In conclusion, I would like to thank E.A. Mareev for his attention to this study.

FUNDING

This study was carried out as part of the Program of the Presidium of the Russian Academy of Sciences “Climate Changes: Causes, Risks, Consequences, Problems of Adaptation and Regulation” (project no. 0035-2018-0024).

REFERENCES

  1. 1.
    A. S. Monin and Yu. A. Shishkov, “Climate a problem of Physics,” Phys.-Usp. 43 (4) 381–406 (2000).CrossRefGoogle Scholar
  2. 2.
    V. P. Dymnikov, V. N. Lykosov, and E. M. Volodin, “Modeling climate and its changes: Current problems,” Herald Russ. Acad. Sci. 82 (2), 111–119 (2012).CrossRefGoogle Scholar
  3. 3.
    G. S. Golitsyn, Statistics and Dynamics of Natural Processes and Phenomena: Methods, Instrumentation, and Results (URSS, Moscow, 2013) [in Russian].Google Scholar
  4. 4.
    A. S. Monin and D. M. Sonechkin, Climate Oscillations from Observational Data. The Triple Solar and Other Cycles (Nauka, Moscow, 2005) [in Russian].Google Scholar
  5. 5.
    V. A. Rozhkov and Yu. A. Trapeznikov, Probabilistic Models of Oceanological Processes (Gidrometeoizdat, Leningrad, 1990) [in Russian].Google Scholar
  6. 6.
    V. Ya. Sergin and S. Ya. Sergin, System Analysis of the Problem of Large Climate Oscillations and the Earth’s Glaciation (Gidrometeoizdat, Leningrad, 1978) [in Russian].Google Scholar
  7. 7.
    D. Rapp, Ice Ages and Interglacials. Measurement, Interpretation and Models (Springer, South Pasadena, 2009).Google Scholar
  8. 8.
    B. V. Poltaraus and A. V. Kislov, Climatology. Paleoclimatology and Climate Theory (MGU, Moscow, 1984) [in Russian].Google Scholar
  9. 9.
    G. Bond, W. Showers, M. Cheseby, et al., “A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climate,” Science 278, 1257–1266 (1997).CrossRefGoogle Scholar
  10. 10.
    H. Heinrich, “Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130000 years,” Quat. Res. 29, 142–152 (1988).CrossRefGoogle Scholar
  11. 11.
    C. Tsuchiya and K. Sato, “Universal frequency spectra of surface meteorological fluctuation,” J. Clim. 24, 4718–4732 (2011).CrossRefGoogle Scholar
  12. 12.
    K. Hasselmann, “Stochastic climate model. Part 1. Theory,” Tellus 28 (6), 473–485 (1976).CrossRefGoogle Scholar
  13. 13.
    R. E. Dickinson, “Convergence rate and stability of ocean–atmosphere coupling schemes with a zero-dimensional climate model,” J. Atmos. Sci. 38, 2112–2120 (1981).CrossRefGoogle Scholar
  14. 14.
    A. P. Zubarev and P. F. Demchenko, “Predictability of global-mean air temperature in a simple stochastic model of the atmosphere–ocean interaction,” Izv. Ross. Akad. Nauk: Fiz. Atmos. Okeana 28 (1), 27–32 (1992).Google Scholar
  15. 15.
    P. F. Demchenko and A. V. Kislov, Stochastic Dynamics of Natural Objects. Brownian Motion and Geophysical Applications (GEOS, Moscow, 2010) [in Russian].Google Scholar
  16. 16.
    P. Sura and M. Newman, “The impact of rapid wind variability upon air–sea thermal coupling,” J. Clim. 21, 621–637 (2008).CrossRefGoogle Scholar
  17. 17.
    P. Sura and P. D. Sardeshmukh, “A global view of air-sea thermal coupling and related non-Gaussian SST variability,” Atmos. Res. 94, 140–149 (2009).CrossRefGoogle Scholar
  18. 18.
    L. I. Piterbarg, Dynamics and Forecast of Large-Scale SST Anomalies (Statistical Approach) (Gidrometeoizdat, Leningrad, 1989) [in Russian].Google Scholar
  19. 19.
    B. A. Kagan, V. A. Ryabchenko, and A. S. Safrai, Response of the Atmosphere–Ocean System to External Influences (Gidrometeoizdat, Leningrad, 1990) [in Russian].Google Scholar
  20. 20.
    K. Bumke and M. Schlundt, “Measured and parameterized energy fluxes estimated for Atlantic transects of R/V Polarstern,” J. Phys. Oceanogr. 44, 482–491 (2014).CrossRefGoogle Scholar
  21. 21.
    S. A. Hsu, “A relationship between the Bowen ratio and sea–air temperature difference under unstable condition at sea,” J. Phys. Oceanogr. 22, 2222–2226 (1998).CrossRefGoogle Scholar
  22. 22.
    V. I. Byshev and Yu. A. Ivanov, “Time spectra of some characteristics of the atmosphere over the ocean,” Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana 5 (1), 17–28 (1969).Google Scholar
  23. 23.
    O. Zolina and S. K. Gulev, “Synoptic variability of ocean atmosphere turbulent fluxes associated with atmospheric cyclones,” J. Clim. 16, 2717–2734 (2003).CrossRefGoogle Scholar
  24. 24.
    P. F. Demchenko, “Estimates for the variance of mean hemispheric temperature according to satellite observations over radiation balance fluctuations,” Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana 18 (2), 138–144 (1982).Google Scholar
  25. 25.
    X. Liang and C. Wunsch, “Vertical redistribution of oceanic heat content,” J. Clim. 28, 3821–3833 (2015).CrossRefGoogle Scholar
  26. 26.
    A. P. Zubarev, “Theoretical estimate for the influence of intensity of synoptic pulsations of wind velocity and radiation balance on air-temperature fluctuations,” Izv. Ross. Akad. Nauk: Fiz. Atmos. Okeana 28 (6), 574–581 (1992).Google Scholar
  27. 27.
    R. N. Hoffman and J. V. Ardizzone, “Error estimates for ocean surface winds: Applying desroziers diagnostics to the cross-calibrated, multiplatform analysis of wind speed,” J. Atmos. Oceanic Technol. 30, 2596–2603 (2013).CrossRefGoogle Scholar
  28. 28.
    Y. Huang and V. Ramaswamy, “Evolution and trend of the outgoing longwave radiation spectrum,” J. Clim. 22, 4637–4651 (2009).CrossRefGoogle Scholar
  29. 29.
    A. Ruzmaikin, H. H. Aumann, and J. H. Jiang, “Interhemispheric variability of Earth’s radiation,” J. Atmos. Sci. 72, 4615–4628 (2015).CrossRefGoogle Scholar
  30. 30.
    H.-B. Fredriksen and K. Rypdal, “Spectral characteristics of instrumental and climate model surface temperatures,” J. Clim. 29, 1253–1268 (2016).CrossRefGoogle Scholar
  31. 31.
    B. R. Levin, Theoretical Bases of Statistical Radio Engineering (Sov. radio, Moscow, 1966) [in Russian].Google Scholar
  32. 32.
    V. E. Prival’skii, Climate Variability. Stochastic Models, Predictability, and Spectra (Nauka, Moscow, 1985) [in Russian].Google Scholar
  33. 33.
    C. Deser and M. A. Alexander, “Sea surface temperature variability: Patterns and mechanisms,” Annu. Rev. Mar. Sci. 2, 115–143 (2010).CrossRefGoogle Scholar
  34. 34.
    A. Wang and X. Zeng, “Development of global hourly land surface air temperature datasets,” J. Clim. 26, 7676–7691 (2013).CrossRefGoogle Scholar
  35. 35.
    P. Ya. Groisman, “Estimates for the variability of annual-mean zonal air temperature,” Meteorol. Gidrol., No. 3, 103–105 (1987).Google Scholar
  36. 36.
    D. A. Petrov, “Effect of fluctuations of the linear feedback coefficient on the frequency spectrum of averaged temperature in a simple energy balance climate model,” Izv., Atmos. Ocean. Phys. 53 (5), 495–504 (2017).CrossRefGoogle Scholar
  37. 37.
    S. M. Rytov, Yu. A. Kravtsov, and Yu. A. Tatarskii, Introduction to Statistical Radiophysics (Nauka, Moscow, 1978), Vol. 2.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Applied Physics, Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations