Izvestiya, Atmospheric and Oceanic Physics

, Volume 55, Issue 4, pp 357–364 | Cite as

Subpollen Particles as Atmospheric Cloud Condensation Nuclei

  • E. F. MikhailovEmail author
  • O. A. Ivanova
  • E. Yu. Nebosko
  • S. S. Vlasenko
  • T. I. Ryshkevich


Bioparticles constitute a significant fraction of atmospheric aerosol. Their size range varies from nanometers (macromolecules) to hundreds of micrometers (plant pollen and vegetation residues). Like other atmospheric aerosol particles, the degree of involvement of bioaerosols in atmospheric processes largely depends on their hygroscopic and condensation properties. This paper studies the ability of subpollen particles of pine, birch, and rape to serve as cloud condensation nuclei. Secondary particles are obtained by the aqueous extraction of biological material from pollen grains and the subsequent solidification of atomized liquid droplets. The parameters of cloud activation are determined in the size range of 20–270 nm and water-vapor supersaturations of 0.1–1.1%. Measurement data were used to determine the hygroscopicity parameter that characterizes the effect of the chemical composition of subparticles on their condensation properties. The hygroscopic parameter varies in the range from 0.12 to 0.13. In general, the results of measurements have shown that the condensation activity of subpollen particles is comparable with the condensation activity of secondary organic aerosols and depends weakly on the type of primary pollen.


bioaerosol subpollen particles condensation activity of aerosols spectrometer of cloud condensation nuclei hygroscopicity parameter 



This study was supported by the Russian Foundation for Basic Research, project no. 16-05-00717a, and the Geomodel and Innovative Technologies of Composite Materials resource centers. The results of experimental measurements discussed in Section 5 were obtained with support from the Russian Science Foundation, project no. 18-17-00076.


  1. 1.
    R. Jaenicke, “Abundance of cellular material and proteins in the atmosphere,” Science 308, 73– (2005).Google Scholar
  2. 2.
    A. I. Borodulin, A. S. Safatov, B. D. Belan, and M. V. Panchenko, “The height distribution and seasonal variations of the tropospheric aerosol biogenic component concentration on the south of Western Siberia,” J. Aerosol Sci. 34 (1), 681–690 (2003).CrossRefGoogle Scholar
  3. 3.
    H. E. Manninen, J. Back, S.-L. Sinto-Nissila, et al., “Patterns in airborne pollen and other primary biological aerosol particles (PBAP), and their contribution to aerosol mass and number in a boreal forest,” Boreal Environ. Res. 19B, 383–405 (2014).Google Scholar
  4. 4.
    M. Sofiev, P. Siljamo, P. Ranta, et al., “Towards numerical forecasting of long-range air transport of birch pollen: Theoretical considerations and a feasibility study,” Int. J. Biometeorol. 50, 392–402 (2006).CrossRefGoogle Scholar
  5. 5.
    O. Möhler, P. J. DeMott, G. Vali, et al., “Microbiology and atmospheric processes: The role of biological particles in cloud physics,” Biogeosciences 4, 1059–1071 (2007).CrossRefGoogle Scholar
  6. 6.
    U. Pöschl, S. T. Martin, B. Sinha, et al., “Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon,” Science 329, 1513–1515 (2010).CrossRefGoogle Scholar
  7. 7.
    P. J. DeMott, O. Möhler, O. Stetzer, et al., “Resurgence in ice nuclei measurement research,” Bull. Am. Meteorol. Soc. 92, 1623 – 1635 (2011).CrossRefGoogle Scholar
  8. 8.
    C. E. Morris, F. Conen, and J. A. Huffman, “Bioprecipitation: a feedback cycle linking Earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere,” Global Change Biol. 20, 341–351 (2014).CrossRefGoogle Scholar
  9. 9.
    F. D. Pope, “Pollen grains are efficient cloud condensation nuclei,” Environ. Res. Lett. 5 (4), 044015 (2010).CrossRefGoogle Scholar
  10. 10.
    C. Hoose and O. Möhler, “Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments,” Atmos. Chem. Phys. 12, 9817–9854 (2012).CrossRefGoogle Scholar
  11. 11.
    C. Hoose, J. E. Kristjansson, and S. M. Burrows, “How important is biological ice nucleation in clouds on a global scale?,” Environ. Res. Lett. 5, 024009 (2010).CrossRefGoogle Scholar
  12. 12.
    D. V. Spracklen, K. S. Carslaw, J. Merikanto, et al., “Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation,” Atmos. Chem. Phys. 10, 4775–4793 (2010).CrossRefGoogle Scholar
  13. 13.
    A. Sesartic, U. Lohmann, and T. Storelvmo, “Modelling the impact of fungal spore ice nuclei on clouds and precipitation,” Environ. Res. Lett. 8 (1), 014029 (2013).CrossRefGoogle Scholar
  14. 14.
    W. R. Solomon, “Airborne pollen: A brief life,” J Allergy Clin. Immunol. 109, 895–900 (2002).CrossRefGoogle Scholar
  15. 15.
    M. Grote, S. Vrtala, V. Niederberger, et al., “Release of allergen-bearing cytoplasm from hydrated pollen: A mechanism common to a variety of grass (Poaceae) species revealed by electron microscopy,” J. Allergy Clin. Immunol. 108, 109–115 (2001).CrossRefGoogle Scholar
  16. 16.
    P. E. Taylor, R. C. Flagan, A. G. Miguel, et al., “Birch pollen rupture and the release of aerosols of respirable allergens,” Clin. Exp. Allergy 34, 1591–1596 (2004).CrossRefGoogle Scholar
  17. 17.
    B. G. Pummer, H. Bauer, J. Bernardi, et al., “Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen,” Atmos. Chem. Phys. 12, 2541–2550 (2012).CrossRefGoogle Scholar
  18. 18.
    S. Augistin, H. Wex, D. Niedermeier, et al., “Immersion freezing of birch pollen washing water,” Atmos. Chem. Phys. 13, 10989–11003 (2013).CrossRefGoogle Scholar
  19. 19.
    D. O’Sullivan, B. J. Murray, J. F. Ross, et al., “The relevance of nanoscale biological fragments for ice nucleation in clouds,” Sci. Rep. 5, 8082 (2015).CrossRefGoogle Scholar
  20. 20.
    A. L. Steiner, S. D. Brooks, C. Deng, et al., “Pollen as atmospheric cloud condensation nuclei,” Geophys. Res. Lett. 42, 3596–3602 (2015).CrossRefGoogle Scholar
  21. 21.
    G. C. Roberts and A. Nenes, “A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements,” Aerosol Sci. Technol. 39, 206–221 (2005).CrossRefGoogle Scholar
  22. 22.
    D. Rose, S. S. Gunthe, E. Mikhailov, et al., “Calibration and measurement of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment,” Atmos. Chem. Phys. 8, 1153–1179 (2008).CrossRefGoogle Scholar
  23. 23.
    E. F. Mikhailov, O. A. Ivanova, S. S. Vlasenko, E. Yu. Nebos’ko, and T. I. Ryshkevich, “Cloud condensation nuclei activity of the Aitken mode particles near St. Petersburg, Russia,” Izv., Atmos. Ocean. Phys. 53 (3), 326–333 (2017).CrossRefGoogle Scholar
  24. 24.
    G. P. Frank, U. Dusek, and M. O. Andreae, “Technical note: A method for measuring size-resolved CCN in the atmosphere,” Atmos. Chem. Phys. Discuss. 6 (3), 4879–4895 (2006).CrossRefGoogle Scholar
  25. 25.
    D. Rose, A. Nowak, P. Achtert, et al., “Cloud condensation nuclei in polluted air and biomass burning smoke near the megacity Guangzhou, China. Part 1: Size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity,” Atmos. Chem. Phys. 10, 3365–3383 (2010).CrossRefGoogle Scholar
  26. 26.
    M. D. Petters and S. M. Kreidenweis, “A single parameter representation of hygroscopic growth and cloud condensation nucleus activity,” Atmos. Chem. Phys. 7, 1961–1971 (2007).CrossRefGoogle Scholar
  27. 27.
    M. O. Andreae and D. Rosenfeld, “Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols,” Earth-Sci. Rev. 89, 13–41 (2008).CrossRefGoogle Scholar
  28. 28.
    E. J. T. Levin, A. J. Prenni, M. D. Petters, et al., “An annual cycle of size-resolved aerosol hygroscopicity at a forested site in Colorado,” J. Geophys. Res. 117 (D6) (2012).Google Scholar
  29. 29.
    E. F. Mikhailov, G. N. Mironov, C. Pöhlker, et al., “Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign,” Atmos. Chem. Phys. 15, 8847–8869 (2015).CrossRefGoogle Scholar
  30. 30.
    M. Pöhlker, C. Pöhlker, F. Ditas, et al., “Long-term observations of cloud condensation nuclei in the Amazon rain forest. Part 1: Aerosol size distribution, hygroscopicity, and new model parametrizations for CCN prediction,” Atmos. Chem. Phys. 16, 15709–15740 (2016).CrossRefGoogle Scholar
  31. 31.
    K. J. Pringle, H. Tost, A. Pozzer, et al., “Global distribution of the effective aerosol hygroscopicity parameter for CCN activation,” Atmos. Chem. Phys. 10, 5241–5255 (2010).CrossRefGoogle Scholar
  32. 32.
    G. G. Franchi, L. Bellani, M. Nepi, et al., “Types of carbohydrate reserves in pollen: Localization, systematic distribution and ecophysiological significance,” Flora 191, 143–159 (1996).CrossRefGoogle Scholar
  33. 33.
    E. Pacini, M. Guarnieri, and M. Nepi, “Pollen carbohydrates and water content during development, presentation, and dispersal: A short review,” Protoplasma 228, 73–77 (2006).CrossRefGoogle Scholar
  34. 34.
    C. Suphioglu, M. B. Singh, P. Taylor, et al., “Mechanism of grass-pollen-induced asthma,” The Lancet 339, 569–572 (1992).CrossRefGoogle Scholar
  35. 35.
    C. Pöhlker, J. A. Huffman, J.-D. Forster, et al., “Autofluorescence of atmospheric bioaerosols: Spectral fingerprints and taxonomic trends of pollen,” Atmos. Meas. Tech. 6, 3369–3392 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. F. Mikhailov
    • 1
    Email author
  • O. A. Ivanova
    • 1
  • E. Yu. Nebosko
    • 1
  • S. S. Vlasenko
    • 1
  • T. I. Ryshkevich
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations