Izvestiya, Atmospheric and Oceanic Physics

, Volume 55, Issue 4, pp 344–351 | Cite as

Modeling of Atmospheric Disturbances over the Crimean Mountains

  • V. N. KozhevnikovEmail author


In using the nonlinear analytical model of the flow over the mountains, orographic disturbances and model adequacy are studied. Theoretically calculated trajectories of motion and disturbances of temperature and humidity are compared to stereo-photogrammetric measurements of wave clouds. It is shown that the model successfully describes the spatial structure and amplitudes of disturbances in the troposphere beyond the turbulent surface air. It is established that, on days of cloud observations, turbulent processes in the surface air do not strongly affect wavy processes at heights over 2.5 km.


atmospheric physics clouds hydrodynamics modeling flow over mountains Lyra scale 



  1. 1.
    A. A. Dorodnitsyn, “Airflow disturbances caused by Earth surface inhomogeneities,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, No. 23 (1938).Google Scholar
  2. 2.
    G. Lyra, “Theorie der stationären Leewellenströmung in freier Atmosphäre,” Z. Angew. Math. Mech. 23 (1), 1–28 (1943).CrossRefGoogle Scholar
  3. 3.
    R. S. Scorer, Environmental Aerodynamics (Wiley, New York, 1978; Mir, Moscow, 1980).Google Scholar
  4. 4.
    R. R. Long, “Some aspects of the flow of stratified fluids. III. Continuous density gradients,” Tellus 7 (3), 341–357 (1955).CrossRefGoogle Scholar
  5. 5.
    L. N. Gutman, Introduction to the Nonlinear Theory of Mesoscale Meteorological Processes (Gidrometeoizdat, Leningrad, 1969) [in Russian].Google Scholar
  6. 6.
    V. N. Kozhevnikov, Atmospheric Disturbances in Airflow around Mountains (Nauchnyi mir, Moscow, 1999) [in Russian].Google Scholar
  7. 7.
    J. W. Miles, “Lee waves in a stratified flow. Part II. Semi-circular obstacle,” J. Fluid Mech. 33 (4), 803–814 (1968).CrossRefGoogle Scholar
  8. 8.
    Y.-L. Lin, Mesoscale Dynamics (Cambridge University Press, Cambridge, 2007).CrossRefGoogle Scholar
  9. 9.
    P. A. Toropov, S. A. Myslenko, and T. E. Samsonov, “Numerical simulation of the Novorossiysk bora and the related wind waves,” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 2, 38–46 (2013).Google Scholar
  10. 10.
    V. V. Efimov and V. S. Barabanov, “Simulation of bora in Novorossiysk,” Russ. Meteorol. Hydrol. 38 (3), 171–176 (2013).CrossRefGoogle Scholar
  11. 11.
    P. A. Toropov and A. A. Shestakova, “Testing the WRF mesoscale model for the Novorossiysk bora forecast,” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 3, 23–29 (2014).Google Scholar
  12. 12.
    A. V. Gavrikov and A. Yu. Ivanov, “Anomalously strong bora over the Black Sea: Observations from space and numerical modeling,” Izv., Atmos. Ocean. Phys. 51 (5), 546–556 (2015).CrossRefGoogle Scholar
  13. 13.
    A. A. Shestakova, K. B. Moiseenko, and P. A. Toropov, “Hydrodynamic aspects of the Novorossiysk bora episodes in 2012–2013,” Izv., Atmos. Ocean. Phys. 51 (5), 534–545 (2015).CrossRefGoogle Scholar
  14. 14.
    E. Gossard and W. Hooke, Waves in the Atmosphere (Elsevier, Amsterdam, 1975; Mir, Moscow, 1978).Google Scholar
  15. 15.
    V. N. Kozhevnikov, “A nonlinear problem of orographic disturbance of a stratified airflow,” Izv. Akad. Nauk SSSR: Ser. Geofiz., No. 7, 1108–1116 (1963).Google Scholar
  16. 16.
    T. N. Bibikova, E. V. Zhurba, V. Z. Kisel’nikova, and V. N. Kozhevnikov, “Lee-wave orographic disturbances in the Crimea,” Tr. Gidrometeorol. Tsentra SSSR, No. 238, 93–111 (1981).Google Scholar
  17. 17.
    V. N. Kozhevnikov, T. N. Bibikova, and E. V. Zhurba, “Orographic waves, clouds, and curls with horizontal axis over the Crimean Mountains,” Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana 22 (7), 682–690 (1986).Google Scholar
  18. 18.
    V. N. Kozhevnikov and M. K. Bedanokov, “A nonlinear multilayer model of airflow around an arbitrary profile,” Izv. Ross. Akad. Nauk: Fiz. Atmos. Okeana 29 (6), 780–792 (1993).Google Scholar
  19. 19.
    V. N. Kozhevnikov and M. K. Bedanokov, “Wave disturbances over the Crimean Mountains: Theory and observations,” Izv., Atmos. Ocean. Phys. 34 (4), 491–500 (1998).Google Scholar
  20. 20.
    V. N. Kozhevnikov, Candidate’s Dissertation in Mathematics and Physics (Moscow State University, Moscow, 1965).Google Scholar
  21. 21.
    V. N. Kozhevnikov, “Orographic disturbances in a two-dimensional stationary problem,” Izv. Akad. Nauk SSSR 4 (1), 33–52 (1968).Google Scholar
  22. 22.
    V. N. Kozhevnikov and A. S. Losev, “Construction of a model of airflow around an object for a boundary condition strictly satisfied on a cylindrical profile,” Vestn. Mosk. Univ., Ser. 3: Fiz., Astron. 23 (5), 43–50 (1985).Google Scholar
  23. 23.
    A. Gill, Atmosphere–Ocean Dynamics (Academic, London, 1982; Mir, Moscow, 1986).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations