Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 55, Issue 4, pp 352–356 | Cite as

Validation of Integrated Water-Vapor Content from GNSS Data of Ground-Based Measurements

  • V. V. KalinnikovEmail author
  • O. G. Khutorova
Article
  • 5 Downloads

Abstract

Time series of integrated water-vapor (IWV) content for 2015–2017 at eight paired GNSS stations and solar photometry data from the AERONET network in Europe have been compared. The distance between station pairs was no more than 20 km. The average and standard deviations of discrepancies have been shown to vary seasonally. The GNSS–photometer bias in winter was from –0.61 to 0.34 mm. The IWV content in summer is overestimated by the GNSS relative to photometers by 0.52 to 2.26 mm. The standard deviation is from 1.31 to 1.64 mm with a maximum in summer and decreases to 0.49–0.86 mm in winter, which is 5–6% of IWV.

Keywords:

Global navigation satellite systems solar photometer integrated water vapor content 

Notes

ACKNOWLEDGMENTS

We are grateful to B. Holben and his team for providing us with AERONET station data. This study was supported by the Russian Foundation for Basic Research, project no. 17-05-00863. Data processing was conducted within a state grant to the Kazan (Volga Region) Federal University aimed at improving its competitiveness among leading scientific and educational centers in the world.

REFERENCES

  1. 1.
    V. B. Mendes, Modeling the Neutral-Atmospheric Propagation Delay in Radiometric Space Techniques (UNB, New Brunswick, Canada, 1999), Tech. Report. No. 199.Google Scholar
  2. 2.
    S. Bastin, C. Champollion, O. Block, P. Drobinski, and F. Masson, “Diurnal cycle of water vapor as documented by a dense GPS network in a coastal area during E-SCOMPTE IOP2,” J. Appl. Meteorol. Climatol. 46 (2), 167–182 (2007).CrossRefGoogle Scholar
  3. 3.
    C. Champollion, P. Drobinski, M. Haeffelin, O. Bock, J. Tarniewicz, M. N. Bouin, and R. Vautard, “Water vapour variability induced by urban/rural surface heterogeneities during convective conditions,” Q. J. R. Meteorol. Soc. 135 (642), 1266–1276 (2009).CrossRefGoogle Scholar
  4. 4.
    S. Masoumi, S. McClusky, A. Koulali, and P. Tregoning, “A directional model of tropospheric horizontal gradients in global positioning system and its application for particular weather scenarios,” J. Geophys. Res.: Atmos. 122, 4401–4425 (2017).Google Scholar
  5. 5.
    D. Landskron and J. Böhm, “Refined discrete and empirical horizontal gradients in VLBI analysis,” J. Geodesy 92 (12), 1387–1399 (2018).CrossRefGoogle Scholar
  6. 6.
    V. V. Kalinnikov, O. G. Khutorova, and G. M. Teptin, “Influence nonuniformity of the atmospheric water vapor field on the phase measurements of radio signals from global navigation satellite systems,” Radiophys. Quantum Electron. 56 (2), 96–103 (2013).CrossRefGoogle Scholar
  7. 7.
    V. V. Kalinnikov and O. G. Khutorova, “Diurnal variations in integrated water vapor derived from a GPS ground network in the Volga–Ural region of Russia,” Ann. Geophys. 35 (3), 453–464 (2017).CrossRefGoogle Scholar
  8. 8.
    T. J. Glowacki, N. T. Penna, and W. P. Bourke, “Validation of GPS-based estimates of integrated water vapour for the Australian region and identification of diurnal variability,” Aust. Meteorol. Mag. 55 (2), 131–148 (2006).Google Scholar
  9. 9.
    S. Heise, G. Dick, G. Gendt, T. Schmidt, and J. Wickert, “Integrated water vapor from IGS ground-based GPS observations: Initial results from a global 5-min data set,” Ann. Geophys. 27 (7), 2851–2859 (2009).CrossRefGoogle Scholar
  10. 10.
    R. Haas, T. Ning, and G. Elgered, “Long-term trends in the amount of atmospheric water vapour derived from space geodetic and remote sensing techniques,” in ESA Proceedings WPP 326, Copenhagen, Denmark, 31 August–2 Septmepber, 2011.Google Scholar
  11. 11.
    R. Van Malderen, H. Brenot, E. Pottiaux, S. Beirle, C. Hermans, M. De Maziere, T. Wagner, H. De Backer, and C. Bruyninx, “A multi-site intercomparison of integrated water vapour observations for climate change analysis,” Atmos. Meas. Tech. 7 (8), 2487–2512 (2014).CrossRefGoogle Scholar
  12. 12.
    X. Li, F. Zus, C. Lu, G. Dick, T. Ning, M. Ge, J. Wickert, and H. Schuh, “Retrieving of atmospheric parameters from Multi-GNSS in real time: Validation with water vapor radiometer and numerical weather model,” J. Geophys. Res.: Atmos. 120 (14), 7189–7204 (2015).Google Scholar
  13. 13.
    S. Steinke, S. Eikenberg, U. Löhnert, G. Dick, D. Klocke, P. Di Girolamo, and S. Crewell, “Assessment of small-scale integrated water vapour variability during HOPE,” Atmos. Chem. Phys. 15 (5), 2675–2692 (2015).CrossRefGoogle Scholar
  14. 14.
    V. V. Kalinnikov and O. G. Khutorova, “The field of integrated water vapor over Northeastern Siberia from the data of global navigation satellite systems,” Russ. Meteorol. Hydrol. 41 (10), 665–672 (2016).CrossRefGoogle Scholar
  15. 15.
    J. Kouba, A guide to using international GNSS service (IGS) products, May 2009. http://kb.igs.org/hc/en-us/ articles/201271873-A-Guide-to-Using-the-IGS-Products.Google Scholar
  16. 16.
    G. Xu, GPS. Theory, Algorithms and Applications (Springer, Berlin, 2007).Google Scholar
  17. 17.
    S. Schaer, PhD Thesis (AIUB, Bern, 1999).Google Scholar
  18. 18.
    A. Niell, “Global mapping functions for the atmosphere delay at radio wavelengths,” J. Geophys. Res. 101 (B2), 3227–3246 (1996).CrossRefGoogle Scholar
  19. 19.
    G. Chen and T. A. Herring, “Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data,” J. Geophys. Res. 102 (B9), 20489–20502 (1997).CrossRefGoogle Scholar
  20. 20.
    M. Bevis, S. Businger, S. Chiswell, T. A. Herring, R. A. Anthes, C. Rocken, R. and H. Ware, “GPS meteorology: Mapping zenith wet delays onto precipitable water,” J. Appl. Meteorol. 33 (3), 379–386 (1994).CrossRefGoogle Scholar
  21. 21.
    J. Saastamioinen, “Contributions to then theory atmospheric refraction. Part II. Refraction corrections in satellite geodesy,” Bull. Geod., No. 107, 13–34 (1973).Google Scholar
  22. 22.
    J. Askne and H. Nordius, “Estimation of tropospheric delay for microwaves from surface weather data,” Radio Sci. 22 (3), 379–386 (1987).CrossRefGoogle Scholar
  23. 23.
    Y. A. Virolainen, Y. M. Timofeyev, V. S. Kostsov, D. V. Ionov, V. V. Kalinnikov, M. V. Makarova, A. V. Poberovsky, N. A. Zaitsev, H. H. Imhasin, A. V. Polyakov, M. Schneider, F. Hase, S. Barthlott, and T. Blumenstock, “Quality assessment of integrated water vapour measurements at the St. Petersburg site, Russia: FTIR vs. MW and GPS techniques,” Atmos. Meas. Tech. 10 (11), 4521–4536.Google Scholar
  24. 24.
    F. S. Solheim, J. Vivekanandan, R. H. Ware, and C.  Rocken, “Propagation delays induced in GPS signals by dry air, water vapor, hydrometeors, and other particulates,” J. Geophys. Res.: Atmos. 104 (D8), 9663–9670 (1999).CrossRefGoogle Scholar
  25. 25.
    Yu. M. Timofeev and A. V. Vasil’ev, Theoretical Bases of Atmospheric Optics (Nauka, St. Petersburg, 2003) [in Russian].Google Scholar
  26. 26.
    A. Smirnov, B. N. Holben, A. Lyapustin, I. Slutsker, and T. F. Eck, “AERONET processing algorithms refinement,” in AERONET Workshop. El Arenosillo, Spain, May 10–14, 2004.Google Scholar
  27. 27.
    J. M. Rueger, Refractive Indices of Light, Infrared and Radio Waves in the Atmosphere (UNSW, Sydney, 2002), UNISURV Rep. S-68.Google Scholar
  28. 28.
    L. Sapucci, L. Machado, J. Monico, and A. Plana-Fattori, “Intercomparison of integrated water vapor estimates from multisensors in the Amazonian region,” J. Atmos. Oceanic Technol. 24 (11), 1880–1894 (2007).CrossRefGoogle Scholar
  29. 29.
    I. A. Berezin, Yu. M. Timofeyev, Ya. A. Virolainen, I. S. Frantsuzova, K. A. Volkova, A. V. Poberovsky, B. N. Holben, A. Smirnov, and I. Slutsker, “Error analysis of integrated water vapor measured by CIMEL photometer,” Izv., Atmos. Ocean. Phys. 53 (1), 58–64 (2017).CrossRefGoogle Scholar
  30. 30.
    X. Li, F. Zus, C. Lu, G. Dick, T. Ning, M. Ge, J. Wickert, and H. Schuh, “Retrieving of atmospheric parameters from Multi-GNSS in real time: Validation with water vapor radiometer and numerical weather model,” J. Geophys. Res.: Atmos. 120 (14), 7189–7204 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Kazan (Volga Region) Federal UniversityKazanRussia

Personalised recommendations