Izvestiya, Atmospheric and Oceanic Physics

, Volume 55, Issue 4, pp 312–323 | Cite as

Layered Structure of Stably Stratified Turbulent Shear Flows

  • A. V. GlazunovEmail author
  • E. V. Mortikov
  • K. V. Barskov
  • E. V. Kadantsev
  • S. S. Zilitinkevich


Data of a numerical simulation of a stably stratified turbulent Couette flow are analyzed for various values of the Richardson number. Two different methods are used: direct numerical simulation (DNS) and large-eddy simulation (LES). It is shown that the flow contains large organized structures, along with chaotic turbulence, regardless of the simulation method. These structures appear as inclined layers in the temperature field with weakly stable stratification, separated by very thin layers with large temperature gradients. The existence of such layered structures in nature is indirectly confirmed by the analysis of data from field measurements on the meteorological mast, where temperature gradient histograms are found to be far from the normal distribution and similar to temperature gradient probability distributions obtained in numerical model data. The simulations indicate an increase in the turbulent Prandtl number with an increase in the gradient Richardson number. It is likely that the identified structures serve as efficient barriers for vertical turbulent heat flux without blocking the momentum transfer. We propose a hypothesis that it is these structures which serve as a physical mechanism for maintaining turbulence under supercritically stable stratification.


atmospheric boundary layer (ABL) direct numerical simulation (DNS) large-eddy simulation (LES) direct measurements of turbulence self-organized structures wind shear turbulent Prandtl number turbulence stable stratification 



This study was carried out at the Research Computing Center, Moscow State University, and supported by the Russian Science Foundation (grant no. 17-17- 01210). Data collection and processing (Section 3 and, in part, 4) were supported by the Russian Science Foundation (grant no. 15-17-20009). The development of numerical models and numerical experiments (Sections 2.1 and 2.1) were supported by the Russian Foundation for Basic Research (grants nos. 16-05-01094, 18-05-60126, 18-05-60299) and by Academy of Finland project ClimEco no. 314 798/799 (2018-2020).


  1. 1.
    L. A. Ostrovskii and Yu. I. Troitskaya, “Model of turbulent transport and turbulence dynamics in a stratified shear flow,” Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana 23 (10), 1031–1040 (1987).Google Scholar
  2. 2.
    S. S. Zilitinkevich, T. Elperin, N. Kleeorin, and I. Rogachevskii, “Energy-and flux-budget (EFB) turbulence closure model for stably stratified flows. Part I: Steady-state, homogeneous regimes,” Boundary-Layer Meteorol. 125 (2), 167–191 (2007).CrossRefGoogle Scholar
  3. 3.
    S. S. Zilitinkevich, T. Elperin, N. Kleeorin, I. Rogachevskii, and I. Esau, “A hierarchy of energy-and flux-budget (EFB) turbulence closure models for stably-stratified geophysical flows,” Boundary-Layer Meteorol. 146 (3), 341–373 (2013).CrossRefGoogle Scholar
  4. 4.
    A. M. Obukhov, “Turbulence in a temperature-inhomogeneous atmosphere,” Tr. Inst. Teor. Geofiz. Akad. Nauk SSSR 1, 95–115 (1946).Google Scholar
  5. 5.
    A. S. Monin and A.M. Obukhov, “Basic laws of turbulent mixing in the atmospheric surface layer,” Inst. Teor. Geofiz. Akad. Nauk SSSR, No. 24, 163–187 (1954).Google Scholar
  6. 6.
    A. N. Kolmogorov, “Local structure of turbulence in an incompressible fluid at very large Reynolds numbers,” Dokl. Akad. Nauk SSSR 30 (4), 99–102 (1941).Google Scholar
  7. 7.
    A. N. Kolmogorov, “Equations of turbulent motion of an incompressible fluid,” Izv. Akad. Nauk SSSR: Fiz. Ser. 6 (1–2), 56–58 (1942).Google Scholar
  8. 8.
    A. M. Obukhov, “Structure of the temperature field in a turbulent flow,” Izv. Akad. Nauk SSSR: Ser. Geogr. Geofiz. 13 (1), 58–69 (1949).Google Scholar
  9. 9.
    A. M. Obukhov, “On the effect of Archimedean forces on the structure of the temperature field in a turbulent flow,” Dokl. Akad. Nauk SSSR 125 (6), 1246–1248 (1959).Google Scholar
  10. 10.
    P. K. Yeung, S. Xu, and K. R. Sreenivasan, “Schmidt number effects on turbulent transport with uniform mean scalar gradient,” Phys. Fluids 14 (12), 4178–4191 (2002).CrossRefGoogle Scholar
  11. 11.
    G. Brethouwer, J. C. R. Hunt, and F. T. M. Nieuwstadt, “Micro-structure and Lagrangian statistics of the scalar field with a mean gradient in isotropic turbulence,” J. Fluid Mech. 474 (10), 193–225 (2003).CrossRefGoogle Scholar
  12. 12.
    D. Chung and G. Matheou, “Direct numerical simulation of stationary homogeneous stratified sheared turbulence,” J. Fluid Mech. 696, 434–467 (2012).CrossRefGoogle Scholar
  13. 13.
    T. Gotoh, P. K. Yeung, P. A. Davidson, Y. Kaneda, and K. R. Sreenivasan, “Passive scalar transport in turbulence: A computational perspective,” in Ten Chapters in Turbulence (Cambridge University Press, Cambridge, 2013), pp. 87–131.Google Scholar
  14. 14.
    P. P. Sullivan, J. C. Weil, E. G. Patton, H. J. Jonker, and D. V. Mironov, “Turbulent winds and temperature fronts in large-eddy simulations of the stable atmospheric boundary layer,” J. Atmos. Sci. 73 (4), 1815–1840 (2016).CrossRefGoogle Scholar
  15. 15.
    A. V. Glazunov, “Numerical simulation of stably stratified turbulent flows over flat and urban surfaces,” Izv., Atmos. Ocean. Phys. 50 (3), 236–246 (2014).CrossRefGoogle Scholar
  16. 16.
    A. S. Monin and A. M. Yaglom, Statistical Hydromechanics: Mechanics of Turbulence, Vol. 1 (Nauka, Moscow, 1965) [in Russian].Google Scholar
  17. 17.
    J. W. Miles, “On the stability of heterogeneous shear flows,” J. Fluid Mech. 10 (4), 496–508 (1961).CrossRefGoogle Scholar
  18. 18.
    L. N. Howard, “Note on a paper of John W. Miles,” J. Fluid Mech. 10, 509–512 (1961).CrossRefGoogle Scholar
  19. 19.
    S. S. Zilitinkevich, T. Elperin, N. Kleeorin, I. Rogachevskii, I. Esau, T. Mauritsen, and M. W. Miles, “Turbulence energetics in stably stratified geophysical flows: Strong and weak mixing regimes,” Q. J. R. Meteorol. Soc. 134 (633), 793–799 (2008).CrossRefGoogle Scholar
  20. 20.
    A. A. Grachev, E. L. Andreas, C. W. Fairall, P. S. Guest, and P. O. G. Persson, “On the turbulent Prandtl number in the stable atmospheric boundary layer,” Boundary-Layer Meteorol. 125 (2), 329–341 (2007).CrossRefGoogle Scholar
  21. 21.
    A. V. Glazunov, “Numerical simulation of stably stratified turbulent flows over an urban surface: Spectra and scales and parameterization of temperature and wind-velocity profiles,” Izv., Atmos. Ocean. Phys. 50 (4), 356–368 (2014).CrossRefGoogle Scholar
  22. 22.
    E. V. Mortikov, “Numerical simulation of the motion of an ice keel in a stratified flow,” Izv., Atmos. Ocean. Phys. 52 (1), 108–115 (2016).CrossRefGoogle Scholar
  23. 23.
    A. V. Glazunov, E. V. Mortikov, and V. N. Lykosov, “Supercomputer technologies of mathematical modeling of geophysical turbulence,” in Proceedings of the International Conference on Computational and Applied Mathematics (CAM’17), Marchuk Scientific Readings-2017 (June 25–July 14, 2017) (IVMMG SO RAN, Novosibirsk, 2017), pp. 197–203 [in Russian].Google Scholar
  24. 24.
    A. V. Glazunov, “Large-eddy simulation of turbulence with the use of a mixed dynamic localized closure: Part 1. Formulation of the problem, model description, and diagnostic numerical tests,” Izv., Atmos. Ocean. Phys. 45 (1), 5–24 (2009).CrossRefGoogle Scholar
  25. 25.
    A. Glazunov, U. Rannik, V. Stepanenko, V. Lykosov, M. Auvinen, T. Vesala, and I. Mammarella, “Large-eddy simulation and stochastic modeling of Lagrangian particles for footprint determination in the stable boundary layer,” Geosci. Model Dev. 9 (9), 2925–2949 (2016).CrossRefGoogle Scholar
  26. 26.
    Y. Morinishi, T. S. Lund, O. V. Vasilyev, and P. Moin, “Fully conservative higher order finite difference schemes for incompressible flow,” J. Comput. Phys. 143 (1), 90–124 (1998).CrossRefGoogle Scholar
  27. 27.
    M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, “A dynamic subgrid-scale eddy viscosity model,” Phys. Fluids. A 3, 1760–1765 (1991).CrossRefGoogle Scholar
  28. 28.
    J. A. Businger, Wyngaard, J. C., Izumi, Y., and Bradley E. F., “Flux-profile relationships in the atmospheric surface layer,” J. Atmos. Sci. 28 (2), 181–189 (1971).CrossRefGoogle Scholar
  29. 29.
    K. V. Barskov, A. V. Glazunov, I. A. Repina, V. M. Stepanenko, V. N. Lykossov, and I. Mammarella, “On the applicability of similarity theory for the stable atmospheric boundary layer over complex terrain,” Izv., Atmos. Ocean. Phys. 54 (5), 462–471 (2018).CrossRefGoogle Scholar
  30. 30.
    C. R. Chu, M. B. Parlange, G. G. Katul, and J. D. Albertson, “Probability density functions of turbulent velocity and temperature in the atmospheric surface layer,” Water Resour. Res. 32 (6), 1681–1688 (1996).CrossRefGoogle Scholar
  31. 31.
    S. J. Caughey, “Boundary-layer turbulence spectra in stable conditions,” Boundary Layer Meteorol. 11 (1), 3–14 (1977).CrossRefGoogle Scholar
  32. 32.
    R. H. Kraichnan, “Inertial ranges in two-dimensional turbulence,” Phys. Fluids 10 (7), 1417–1423 (1967).CrossRefGoogle Scholar
  33. 33.
    A. V. Glazunov and V. P. Dymnikov, “Spatial spectra and characteristic horizontal scales of temperature and velocity fluctuations in the convective boundary layer of the atmosphere,” Izv., Atmos. Ocean. Phys. 49 (1), 33–54 (2013).CrossRefGoogle Scholar
  34. 34.
    J. C. Wyngaard, “On the surface-layer turbulence,” in Workshop on Micrometeorology, Ed. by D. A. Haugen (American Meteorological Society, Boston, 1973), pp. 101–149.Google Scholar
  35. 35.
    F. T. M. Nieuwstadt, “The turbulent structure of the stable, nocturnal boundary layer,” J. Atmos. Sci. 41 (14), 2202–2216 (1984).CrossRefGoogle Scholar
  36. 36.
    A. M. Obukhov, “On the distribution of turbulence length scale in flows of arbitrary cross-section,” Appl. Math. Mech., 1942, vol. 6, nos. 2–3, pp. 209–221.Google Scholar
  37. 37.
    S. Zilitinkevich, O. Druzhinin, A. Glazunov, E. Kadantsev, E. Mortikov, I. Repina, and Yu. Troitskaya, Dissipation rate of turbulent kinetic energy in stably stratified sheared flows, Atmos. Chem. Phys., 2019, vol. 19, no. 4, pp. 2489–2496. Scholar
  38. 38.
    A. A. Grachev, E. L. Andreas, C. W. Fairall, P. S. Guest, and P. O. G. Persson, “The critical Richardson number and limits of applicability of local similarity theory in the stable boundary layer,” Boundary-Layer Meteorol. 147 (1), 51–82 (2013).CrossRefGoogle Scholar
  39. 39.
    K. Babić and M. W. Rotach, “Turbulence kinetic energy budget in the stable boundary layer over a heterogeneous surface,” Q. J. R. Meteorol. Soc. 144 (731), 1045–1062 (2018).CrossRefGoogle Scholar
  40. 40.
    I. Stiperski and M. Calaf, “Dependence of near-surface similarity scaling on the anisotropy of atmospheric turbulence,” Q. J. R. Meteorol. Soc. 144 (712), 641–657 (2018).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. V. Glazunov
    • 1
    • 3
    Email author
  • E. V. Mortikov
    • 1
    • 3
  • K. V. Barskov
    • 1
    • 2
  • E. V. Kadantsev
    • 5
  • S. S. Zilitinkevich
    • 4
    • 5
  1. 1.Research Computing Center, Moscow State UniversityMoscowRussia
  2. 2.Obukhov Institute of Atmospheric Physics, Russian Academy of SciencesMoscowRussia
  3. 3.Marchuk Institute of Numerical Mathematics, Russian Academy of SciencesMoscowRussia
  4. 4.Finnish Meteorological InstituteHelsinkiFinland
  5. 5.Institute for Atmospheric and Earth System Research, University of HelsinkiHelsinkiFinland

Personalised recommendations