Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 11, pp 1525–1533 | Cite as

Wildfire Impact on the Main Tree Species of the Near-Yenisei Siberia

  • A. V. BryukhanovEmail author
  • A. V. Panov
  • E. I. Ponomarev
  • N. V. Sidenko


Wildfires are the major cause of forest death in Siberia, as well as one of the main ecological factors forming biodiversity. Here, we present the impact of surface wildfires on Northern Eurasian boreal ecosystems with the example of the main tree species in the Near–Yenisei Siberia. The wildfire impact in the study area is determined by the mean annual burning rate of 0.20 ± 0.05%. In the extremely dry summer of 2012, this value increased to 19%. The integral fire radiative power through the season reached 4.1 × 105 MW/km2, whereas the mean annual value did not exceed 0.64 × 105 MW/km2. Our observations demonstrate the highly variable effect of surface fires on conifer species in Siberia. Only trees with DBH > 5 cm survived a year after moderate severity surface fires. After high severity (usually steady) surface fires only pine trees with DBH > 17.2 cm survived, while trees with DBH > 18.1 cm were the most resistant within further post–fire succession.


Siberia surface fires fire resistance laser–based field instrumentation system post–fire tree mortality fire frequency wildfire remote sensing data fire radiative power 



The work was supported by RFBR and the Government of Krasnoyarsk krai and Krasnoyarsk Regional Scientific Foundation, projects nos. 15–45–04423_r_a and 17–41–240475_r_a.


  1. 1.
    Alekseev, V.A., Diagnostics of the living state of trees and forest stands, Lesovedenie, 1989, no. 4, pp. 51–57.Google Scholar
  2. 2.
    Bartalev, S.A., Stytsenko, F.V., Egorov, V.A., and Lupyan, E.A., Satellite-based assessment of Russian forest fire mortality, Lesovedenie, 2015, no. 2, pp. 83–94.Google Scholar
  3. 3.
    Bryukhanov, A.V., Panov, A.V., Kalyakin, S.V., Sidenko, N.V., and Guzii, V.M., The use of methods of ground-based high-precision laser survey for assessing the post-fire consequences in fresh burnt areas and burnt timbers in Central Siberia, in Materialy Mezhdunar. konf. ENVIROMIS-2014 (Proceedings of the International Conference ENVIROMIS-2014), Tomsk: SCERT, 2014, pp. 197–200.Google Scholar
  4. 4.
    Buryak, L.V., The role of ground fires in the formation of light-coniferous plantings of southern Middle Siberia, Cand. Sci. (Agric.) Dissertation, Krasnoyarsk, 1999.Google Scholar
  5. 5.
    Chi, X., Winderlich, J., Mayer, J.-C., Panov, A.V., Heimann, M., Birmili, W., Heintzenberg, J., Cheng, Y., and Andreae, M.O., Long-term measurements of aerosol and carbon monoxide at the ZOTTO tall tower to characterize polluted and pristine air in the Siberian taiga, Atmos. Chem. Phys., 2013, no. 13, pp. 12271–12298.Google Scholar
  6. 6.
    de Groot, W.J., Cantin, A.S., Flannigan, M.D., Soja, A.J., Gowman, L.M., and Newbery, A., A comparison of Canadian and Russian boreal forest fire regimes, For. Ecol. Manage, 2013, vol. 294, pp. 23–24. doi 10.1016/ j.foreco.2012.07.033CrossRefGoogle Scholar
  7. 7.
    Furyaev, V.V., Zablotskii, V.I., and Chernykh, V.A., Pozharoustoichivost’ sosnovykh lesov (Fire Resistance of Pine Forests), Novosibirsk: Nauka, 2005.Google Scholar
  8. 8.
    Heimann, M., Lavric, J.V., Park, S., Kolle, O., Kuebler, K., Panov, A., Prokushkin, A., Timokhina, A., Skhorochod, A., Mikhailov, E., and Andreae, A., A 10-year climatology of greenhouse gas measurements and aerosols at the Zotino Tall Tower observatory (ZOTTO) in Central Siberia, Rep. Ser. Aerosol Sci., 2017, no. 201, pp. 165–167.Google Scholar
  9. 9.
    Ivanova, G.A., Konard, S.G., McRae, D.D., Bezkorovainaya, I.N., Bogorodskaya, A.V., Zhila, S.V., Ivanov, V.A., Ivanov, A.V., Kovaleva, N.M., Krasnoshchekova, E.N., Kukavskaya, E.A., Oreshkov, D.N., Perevoznikova, V.D., Samsonov, Yu.N., Sorokin, N.D., Tarasov, P.A., Tsvetkov, P.A., and Shishikin, A.S., Vozdeistvie pozharov na komponenty ekosistemy srednetaezhnykh sosnyakov Sibiri (Fire Impact on the Components of Siberian Middle Taiga Pinery), Novosibirsk: Nauka, 2014.Google Scholar
  10. 10.
    Ivanova, G.A., Ivanov, V.A., Kovaleva, N.M., Konard, S.G., Zhila, S.V., and Tarasov, P.A., Succession of vegetation after a high-intensity fire in lichen pine forest, Sib. Ekol. Zh., 2017, no. 1, pp. 61–71. ARTICLE_ID=169782.Google Scholar
  11. 11.
    Justice, C.O., Giglio, L., Korontzi, S., Owens, J., Morisette, J.T., Roy, D., Descloitres, J., Alleaume, S., Petitcolin, F., and Kaufman, Y., The MODIS fire products, Remote Sens. Environ., 2002, no. 83, pp. 244–262.Google Scholar
  12. 12.
    Kaufman, Y.J., Kleidman, R.G., and King, M.D., SCAR-B fires in the tropics: Properties and remote sensing from EOS-MODIS, J. Geophys. Res., 1998, vol. 103, no. D24, pp. 31955–31968.CrossRefGoogle Scholar
  13. 13.
    Kharuk, V.I., Dvinskaya, M.L., Petrov, I.A., Im, S.T., and Ranson, K.J., Larch forests of Middle Siberia: Long-term trends in fire return intervals, Reg. Environ. Change, 2016, vol. 16, pp. 2389–2397. doi 10.1007/ s10113-016-0964-9CrossRefGoogle Scholar
  14. 14.
    Krylov, A., McCarty, J.L., Potapov, P., Loboda, T., Tyukavina, A., Turubanova, S., and Hansen, M.C., Remote sensing estimates of stand-replacement fires in Russia, 2002–2011, Environ. Res. Lett., 2014, no. 9, 105007, pp. 1–8. doi 10.1088/1748-9326/9/10/105007Google Scholar
  15. 15.
    McRae, D.J., Conard, S.G., Ivanova, G.A., Sukhinin, A.I., Baker, S.P., Samsonov, Y.N., Blake, T.W., Ivanov, V.A., Ivanov, A.V., Churkina, T.V., Hao, W.M., Koutzenogij, K.P., and Kovaleva, N., Variability of fire behavior, fire effects and emissions in Scotch pine forests of Central Siberia, Mitigation Adapt. Strategies Global Change, 2006, vol. 11, no. 1, pp. 45–74. doi 10.1007/s11027-006-1008-4CrossRefGoogle Scholar
  16. 16.
    Mikhailov, E., Mironova, S., Mironov, G., Vlasenko, S., Panov, A., Chi, X., Walter, D., Carbone, S., Artaxo, P., Poschl, U., and Andreae, M., Long-term measurements (2010–2014) of carbonaceous aerosol and carbon monoxide at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia, Atmos. Chem. Phys., 2017, no. 17, pp. 14365–14392. Scholar
  17. 17.
    Mota, B. and Wooster, J.W., A new top–down approach for directly estimating biomass burning emissions and fuel consumption rates and totals from geostationary satellite fire radiative power (FRP), Remote Sens. Environ., 2018, vol. 206, pp. 45–62. j.rse.2017.12.016CrossRefGoogle Scholar
  18. 18.
    Panov A.V., Heintzenberg, J., Birmili, W., Seifert, P., Chi, S., Timokhina, A.V., and Andreae, M.O., Spatial distribution of atmospheric aerosols over the territory of Eurasia in middle and high latitudes, Geogr. Nat. Resour., 2015, vol. 36, no. 1, pp. 25–30.CrossRefGoogle Scholar
  19. 19.
    Panov, A., Prokushkin, A., Korets, M., Bryukhanov, A., Myers-Pigg, A., Louchouarn, P., Sidenko, N.V., Amon, R., Andreae, M.O., and Heimann, M., Linking trace gas measurements and molecular tracers of organic matter in aerosols for identification of ecosystem sources and types of wildfires in Central Siberia, IOP Conf. Ser.: Earth Environ. Sci., 2016, vol. 48, 012017. doi 10.1088/1755-1315/48/1/ 01201710.1088/1755-1315/48/1/012017Google Scholar
  20. 20.
    Ponomarev, E.I. and Kharuk, V.I., Wildfire occurrence in forests of the Altai–Sayan region under current climate changes, Contemp. Probl. Ecol., 2016, vol. 9,no. 1, pp. 29–36. doi 10.1134/S199542551601011XCrossRefGoogle Scholar
  21. 21.
    Ponomarev, E.I., Kharuk, V.I., and Ranson, K.J., Wildfires dynamics in Siberian larch forests, Forests, 2016, no. 7, pp. 1–9. doi 10.3390/f7060125Google Scholar
  22. 22.
    Ponomarev, E.I., Shvetsov, E.G., and Usataya, Yu.O., Records of energy characteristics of wildfires in Siberian forests using remote methods, Issled. Zemli Kosmosa, 2017, no. 4, pp. 3–11. doi 10.7868/ S0205961417040017Google Scholar
  23. 23.
    Rosleskhoz Order no. 472 of November 10, 2011, On Approval of Methodological Recommendations for the State Forest Inventory (with changes of May 7, 2013). Scholar
  24. 24.
    Shvidenko, A.Z. and Schepaschenko, D.G., Climate change and wildfires in Russia, Contemp. Probl. Ecol., 2013, vol. 6, no. 5, pp. 50–61.CrossRefGoogle Scholar
  25. 25.
    Sizer, N., Petersen, R., Anderson, J., Hansen, M., Potapov, P., and Thau, D., Tree cover loss spikes in Russia and Canada remains high globally, 2015. http:// Scholar
  26. 26.
    Tsvetkov, P.A., Ustoichivost’ listvennitsy Gmelina k pozharam v severnoi taige Srednei Sibiri (Fire Resistance of Larix gmelinii in Northern Taiga of Middle Siberia), Krasnoyarsk: SibGTU, IL SO RAN, 2007.Google Scholar
  27. 27.
    Valendik, E.N., Sukhinin, A.I., and Kosov, I.V., Vliyanie nizovykh pozharov na ustoichivost' khvoinykh porod (Influence of Ground Fires on the Stability of Coniferous Species), Krasnoyarsk: SO RAN, 2006.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Bryukhanov
    • 1
    Email author
  • A. V. Panov
    • 1
  • E. I. Ponomarev
    • 1
    • 2
  • N. V. Sidenko
    • 1
  1. 1.Sukachev Institute of Forest, Siberian Branch, Russian Academy of SciencesKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations