Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 10, pp 1423–1429 | Cite as

Nonlinear Gravitational Waves and Atmospheric Instability

  • O. G. OnishchenkoEmail author
  • O. A. PokhotelovEmail author
  • N. M. AstafievaEmail author


This is an outline of the main results of the study of dust devils (a type of atmospheric vortices) with a focus on the mechanism of vortex generation in an unstable stratified atmosphere. In the approximation of ideal hydrodynamics, a new nonlinear model of the generation of convective motions and dust devils in an unstable stratified atmosphere has been developed. Using nonlinear equations for internal gravity waves, the model of generation of convective cell plumes has been investigated in the axially symmetric approximation. It has been shown that, in a convectively unstable atmosphere with large-scale seed vorticity, the plumes extremely rapidly generate small-scale intense vertical vortices. The structure of radial, vertical, and toroidal velocity components in these vortices has been investigated. The structure of vertical vorticity and toroidal velocity in vortex areas that are limited by radius has been examined.


atmosphere vortices model of vortices nonlinear structures ideal hydrodynamics 



This work was supported by the Presidium of the Russian Academy of Sciences, program no. 28, within the state task of the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences.


  1. 1.
    Balme, M. and Greeley, R., Dust devils on Earth and Mars, Rev. Geophys., 2006, vol. 44, RG3003. doi 10.1029/ 2005RG000188CrossRefGoogle Scholar
  2. 2.
    Bluestein, H.B., Weiss, C.C., and Pazmany, A.L., Doppler radar observations of dust devils in Texas, Mon. Weather Rev., 2004, vol. 132, pp. 209– 224.CrossRefGoogle Scholar
  3. 3.
    Dutton, J.A., Dynamics of Atmospheric Motions, New York: Dover, 1986.Google Scholar
  4. 4.
    Fritts, D.C. and Alexander, M., Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 2003, vol. 41, no. 1, pp. 1003–1065. doi 10.1029/ 2001RG000106CrossRefGoogle Scholar
  5. 5.
    Jickells, T.D., Nutrient biogeochemistry of the coastal zone, Science, 1998, vol. 281, no. 5374, pp. 217–222. doi 10.1126/science.281.5374.217CrossRefGoogle Scholar
  6. 6.
    Jickells, T.D., An, Z.S., Andersen, K.K., Baker, A.R., Bergametti, G., Brooks, N., Cao, J.J., Boyd, P.W., Duce, R.A., Hunter, K.A., Kawahata, H., Kubilay, N., Liss, P.S., Mahowald, N., Prospero, J.M., Ridgwell, A.J., Tegen, I., and Torres, R., Global iron connections between desert dust, ocean biogeochemistry, and climate, Science, 2005, vol. 308, no. 5718, pp. 67–71. doi 10.1126/science.1105959CrossRefGoogle Scholar
  7. 7.
    Kurgansky, M.V., A simple model of dry convective helical vortices (with applications to the atmospheric dust devil), Dyn. Atmos. Oceans, 2005, vol. 40, pp. 151–162.CrossRefGoogle Scholar
  8. 8.
    Kurgansky, M., Lorenz, R., Renno, N., Takemi, T., Wei,  W., and Gu, Z., Dust devil steady-state structure from a fluid dynamics perspective, Space Sci. Rev., 2016, vol. 203, nos. 1–4, pp. 209–244.CrossRefGoogle Scholar
  9. 9.
    Mahowald, N., Ward, D.S., Kloster, S., Flanner, M.G., Heald, C.L., Heavens, N.G., Hess, P.G., Lamarque, J.-F., and Chuang, P.Y., Aerosol impacts on climate and biogeochemistry, Ann. Rev. Environ. Res., 2011, vol. 36, pp. 45–74.CrossRefGoogle Scholar
  10. 10.
    Mitchell, N.J. and Howells, V.S.C., Vertical velocities associated with gravity waves measured in the mesosphere and lower thermosphere with the EISCAT VLF radar, Ann. Geophys., 1998, vol. 16, pp. 1367–1379. doi 10.1007/s00585-998-1367-0CrossRefGoogle Scholar
  11. 11.
    Oke, A.M.C., Tapper, N.J., and Dunkerley, D., Willy-willies in the Australian landscape: The role of key meteorological variables and surface conditions in defining frequency and spatial characteristics, J. Arid Environ., 2007, vol. 71, pp. 201–215.CrossRefGoogle Scholar
  12. 12.
    Onishchenko, O.G. and Pokhotelov, O.A., Generation of zonal structures by internal gravity waves in the Earth’s atmosphere, Dokl. Earth Sci., 2012, vol. 445, no. 1, pp. 845–848.CrossRefGoogle Scholar
  13. 13.
    Onishchenko, O.G., Pokhotelov, O.A., and Astaf’eva, N.M., Generation of large-scale eddies and zonal winds in planetary atmospheres, Phys.-Usp., 2008, vol. 51, no. 6, pp. 577–590.CrossRefGoogle Scholar
  14. 14.
    Onishchenko, O.G., Pokhotelov, O.A., and Astaf’eva, N.M., Eddies of internal gravity waves in the atmosphere with zonal wind, Sovrem. Probl. Zondirovaniya Zemli Kosmosa, 2012, vol. 9, no. 2, pp. 187–191.Google Scholar
  15. 15.
    Onishchenko, O.G., Pokhotelov, O.A., and Astaf’eva, N.M., Convective cells of inner gravity waves in the Earth’s atmosphere with zonal wind, Geofiz. Issled., 2013a, vol. 14, no. 3, pp. 5–9.Google Scholar
  16. 16.
    Onishchenko, O., Pokhotelov, O., and Fedun, V., Convective cells of inertial gravity waves in the Earth’s atmosphere with finite temperature gradient, Ann. Geophys., 2013b, vol. 31, pp. 459–462. doi 10.5194/angeo-31-459-2013CrossRefGoogle Scholar
  17. 17.
    Onishchenko, O.G., Horton, W., Pokhotelov, O.A., and Stenflo, L., Dust devil generation, Phys Scr., 2014a, vol. 89, no. 7, p. 075606.CrossRefGoogle Scholar
  18. 18.
    Onishchenko, O.G., Pokhotelov, O.A., Horton, W., Smolyakov, A.I., Kaladze, T.D., and Fedun, V.N., Rolls of the internal gravity waves in the Earth’s atmosphere, Ann. Geophys., 2014b, vol. 32, pp. 181–186. doi 10.5194/angeo-32-181-2014CrossRefGoogle Scholar
  19. 19.
    Onishchenko, O.G., Pokhotelov, O.A., and Fedun, V., Convection cells of internal gravity waves in the terrestrial atmosphere, Dokl. Earth Sci., 2014c, vol. 454, no. 1, pp. 37–39.CrossRefGoogle Scholar
  20. 20.
    Onishchenko, O.G., Pokhotelov, O.A., and Astaf’eva, N.M., Convective cells of inertial gravity waves in the vicinity of the mesopause, Geofiz. Issled., 2015a, vol. 16, no. 3, pp. 5–11.Google Scholar
  21. 21.
    Onishchenko, O.G., Pokhotelov, O.A., and Horton, W., Dust devil dynamics in the internal vortex region, Phys. Scr., 2015b, vol. 90, p. 068004. doi 10.1088/0031-8949/90/6/068004CrossRefGoogle Scholar
  22. 22.
    Onishchenko, O.G., Pokhotelov, O.A., Horton, W., and Fedun, V., Explosively growing vortices of unstably stratified atmosphere, J. Geophys. Res.: Atmos., 2016, vol. 121, pp. 7197–7214. doi 10.1002/2016JD025961Google Scholar
  23. 23.
    Rafkin, S., Jemmett-Smith, B., Fenton, L., Lorenz, R., Takemi, T., Ito, J., and Tyler, D., Dust devil formation, Space Sci. Rev., 2016, vol. 203, nos. 1–4, pp. 183–207.CrossRefGoogle Scholar
  24. 24.
    Ramanathan, V., Crutzen, P.J., Kiehl, J.T., and Rosenfeld, D., Atmosphere: Aerosols, climate, and the hydrological cycle, Science, 2001, vol. 294, pp. 2119–2124.CrossRefGoogle Scholar
  25. 25.
    Renno, N.O., Burkett, M.L., and Larkin, M.P., A simple thermodynamical theory for dust devils, J. Atmos. Sci., 1998, vol. 55, pp. 3244–3252. doi 10.1175/1520-469CrossRefGoogle Scholar
  26. 26.
    Renno, N.O., Nash, A.A., Lunine, J., and Murphy, J., Martian and terrestrial dust devils: Test of a scaling theory using pathfinder data, J. Geophys. Res., 2000, vol. 105, pp. 1859–1865.CrossRefGoogle Scholar
  27. 27.
    Renno, N.O., Abreu, V.J., Koch, J., Smith, P.H., Hartogensis, O.K., Henk, A.R.De., Bruin, H.A.R., Burose, D., Delory, G.T., Farrell, W.M., Watts, C.J., Garatuza, J., Parker, M., and Carswell, A., MATADOR 2002: A pilot field experiment on convective plumes and dust devils, J. Geophys. Res., 2004, vol. 109, E07001. doi 10.1029/2003JE002219CrossRefGoogle Scholar
  28. 28.
    Sinclair, P.C., Some preliminary dust devil measurements, Mon. Weather Rev., 1964, vol. 22, no. 8, pp. 363–367.CrossRefGoogle Scholar
  29. 29.
    Sinclair, P.C., General characteristics of dust devils, J. Appl. Meteorol., 1969, vol. 8, pp. 32–45.CrossRefGoogle Scholar
  30. 30.
    Sinclair, P.C., The lower structure of dust devils, J. Atmos. Sci., 1973, vol. 30, pp. 1599–1619. doi 10.1175/1520-469CrossRefGoogle Scholar
  31. 31.
    Tegen, I., Lacis, A.A., and Fung, I., The influence on climate forcing of mineral aerosols from disturbed soils, Nature, 1996, vol. 380, pp. 419–422.CrossRefGoogle Scholar
  32. 32.
    Yuan, L. and Fritts, D.C., Influence of a mean shear on the dynamical instability of an inertio–gravity wave, J. Atmos. Sci., 2004, vol. 46, pp. 2562–2568.CrossRefGoogle Scholar
  33. 33.
    Zhao, Y.Z., Gu, Z.L., Yu, Y.Z., Ge, Y., Li, Y., and Feng, X., Mechanism and large eddy simulation of dust devils, Atmos.-Ocean, 2004, vol. 42, no. 1, pp. 61–84. doi 10.3137/ao.420105CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Schmidt Institute of Physics of the Earth, Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Space Research, Russian Academy of SciencesMoscowRussia

Personalised recommendations